




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题04二次函数与图形问题考法一:定长围面积最大1.(2022·辽宁沈阳·统考中考真题)如图,用一根长60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.(1)若所围成矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?(2)矩形框架ABCD面积最大值为______平方厘米.2.(2022·山东威海·统考中考真题)某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.3.如图,某养殖户利用一面长20m的墙搭建矩形养殖房,中间用墙隔成两间矩形养殖房,每间均留一道1m宽的门.墙厚度忽略不计,新建墙总长34m,设AB的长为x米,养殖房总面积为S.(1)求养殖房的最大面积.(2)该养殖户准备400元全部用于购买小鸡和小鹅养殖,小鸡每只5元,小鹅每只7元,并且小鸡的数量不少于小鹅数量的2倍.该养殖户有哪几种购买方案?4.(2022·江苏无锡·统考中考真题)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为36,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?5.北重一中计划利用一片空地建一个学生自行车车棚,其中一面靠墙,墙的最大可用长度为12米.另三边用总长为26米的木板材料围成.车棚形状如图中的矩形。为了方便学生出行,学校决定在与墙平行的一面开一个2米宽的门。(1)求这个车棚的最大面积是多少平方米?此时与的长分别为多少米?(2)如图2,在(1)的结论下,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路,使得停放自行车的面积为70平方米,那么小路的宽度是多少米?6.(2022·湖南湘潭·统考中考真题)为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长)和长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度的水池且需保证总种植面积为,试分别确定、的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问应设计为多长?此时最大面积为多少?考法二:动点函数图象判断7.(2022·山东菏泽·统考中考真题)如图,等腰与矩形DEFG在同一水平线上,,现将等腰沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为(
)A.B.C.D.8.(2022·辽宁鞍山·统考中考真题)如图,在中,,,,,垂足为点,动点从点出发沿方向以的速度匀速运动到点,同时动点从点出发沿射线方向以的速度匀速运动.当点停止运动时,点也随之停止,连接,设运动时间为,的面积为,则下列图象能大致反映与之间函数关系的是(
)A.B.C.D.9.(2022·广东东莞·东莞市万江第三中学校考三模)如图,等边的边长为,沿运动,沿运动,且速度都为每秒个单位,面积为,则与运动时间秒的函数的图象大致为(
)A.B.C.D.10.(甘肃·模拟预测)如图,矩形ABCD中,AB=3,BC=4,动点P由点A出发,沿A→B→C的路径匀速运动,过点P向对角线AC作垂线,垂足为Q,设AQ=x,△APQ的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.11.(2022·辽宁锦州·中考真题)如图,四边形是边长为的正方形,点E,点F分别为边,中点,点O为正方形的中心,连接,点P从点E出发沿运动,同时点Q从点B出发沿运动,两点运动速度均为,当点P运动到点F时,两点同时停止运动,设运动时间为,连接,的面积为,下列图像能正确反映出S与t的函数关系的是(
)A.B.C.D.12.(2022·辽宁盘锦·中考真题)如图,四边形ABCD是正方形,AB=2,点P为射线BC上一点,连接DP,将DP绕点P顺时针旋转90°得到线段EP,过B作EP平行线交DC延长线于F.设BP长为x,四边形BFEP的面积为y,下列图象能正确反映出y与x函数关系的是()A.B.C.D.13.(2022·辽宁·统考中考真题)如图,在等边三角形ABC中,BC=4,在Rt△DEF中,∠EDF=90°,∠F=30°,DE=4,点B,C,D,E在一条直线上,点C,D重合,△ABC沿射线DE方向运动,当点B与点E重合时停止运动.设△ABC运动的路程为x,△ABC与Rt△DEF重叠部分的面积为S,则能反映S与x之间函数关系的图象是()A.B.C.D.14.(2022·辽宁锦州·统考中考真题)如图,在中,,动点P从点A出发,以每秒1个单位长度的速度沿线段匀速运动,当点P运动到点B时,停止运动,过点P作交于点Q,将沿直线折叠得到,设动点P的运动时间为t秒,与重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是(
)A. B.C. D.15.(2022·辽宁本溪·统考三模)如图,在△ABC中,∠ABC=90°,∠ACB=30°,AB=2,BD是AC边上的中线,将△BCD沿射线CB方向以每秒个单位长度的速度平移,平移后的三角形记为△B1C1D1,设△B1C1D1与△ABD重叠部分的面积为y,平移运动时间为x,当点C1与点B重合时,△B1C1D1停止运动,则下列图象能反映y与x之间函数关系的是()A. B.C. D.16.(2022春·九年级课时练习)如图,中,,,,动点P沿折线运动,到点B停止,动点Q沿运动到点C停止,点P运动速度为2cm/s,点Q的运动速度为2.5cm/s,设运动时间为,的面积为S,则S与对应关系的的图象大致是(
).A. B.C. D.17.(2022·辽宁抚顺·统考三模)如图,在矩形ABCD中,AB=2cm,BC=4cm,E是AD的中点,连接BE,CE.点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BE-EC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是(
)A.B.C. D.18.(2022·河南周口·统考二模)如图,中,,点为边上一个不与、重合的一个动点,过点作与点,作的中线,当点从点出发匀速运动到点时,设的面积为,,与的函数图象如图2所示,则的面积为(
)A. B. C.19 D.1819.(2022·安徽合肥·统考二模)如图,在矩形ABCD中,AB=3,AD=2,点E是CD的中点,射线AE与BC的延长线相交于点F,点M从A出发,沿A→B→F的路线匀速运动到点F停止.过点M作MN⊥AF于点N.设AN的长为x,△AMN的面积为S,则能大致反映S与x之间函数关系的图象是(
)A.B.C. D.20.(2022·安徽芜湖·芜湖市第二十九中学校考二模)如图,中,AB=4,BC=8,∠A=60°,动点P沿A-B-C-D匀速运动,运动过速度为2cm/s,同时动点Q从点A向点D匀速运动,运动速度为1cm/s,点Q到点D时两点同时停止运动.设点Q走过的路程为x(s),的面积为y(cm²),能大致刻画y与x的函数关系的图象是(
)A.B.C.D.21.如图,正方形的边长为4,中,和在一条直线上,当从点G和点B重合时开始向右平移,直到点F与点C重合时停止运动,设平移的距离为x,与正方形重叠部分的面积为y,则下列图象中能大致反映y与x的函数关系的图象是(
)A.B.C.D.22.(2022·新疆昌吉·统考一模)如图所示,P是菱形的对角线上一动点,过点P作垂直于的直线交菱形的边于M点,于N点.设,,,的面积为y,则y关于x的函数图像的大致形状是(
)A. B.C. D.考法三:图形综合问题23.(2022·江苏南通·统考二模)如图1,中,,.点P从点A出发,沿边AB向点B运动.过点P作,垂足为P,PQ交的边于点Q,设,的面积为y.y与x之间的函数关系大致如图2所示,则当时,y的值为(
)A.3 B.2 C. D.24.(2022·内蒙古赤峰·统考中考真题)【生活情境】为美化校园环境,某学校根据地形情况,要对景观带中一个长,宽的长方形水池进行加长改造(如图①,改造后的水池仍为长方形,以下简称水池1),同时,再建造一个周长为的矩形水池(如图②,以下简称水池2).【建立模型】如果设水池的边加长长度为,加长后水池1的总面积为,则关于的函数解析式为:;设水池2的边的长为,面积为,则关于的函数解析式为:,上述两个函数在同一平面直角坐标系中的图像如图③.【问题解决】(1)若水池2的面积随长度的增加而减小,则长度的取值范围是_________(可省略单位),水池2面积的最大值是_________;(2)在图③字母标注的点中,表示两个水池面积相等的点是_________,此时的值是_________;(3)当水池1的面积大于水池2的面积时,的取值范围是_________;(4)在范围内,求两个水池面积差的最大值和此时的值;(5)假设水池的边的长度为,其他条件不变(这个加长改造后的新水池简称水池3),则水池3的总面积关于的函数解析式为:.若水池3与水池2的面积相等时,有唯一值,求的值.25.已知:如图,在中,,,,为边上的高,点Q从点A出发,沿方向匀速运动,速度为;同时,点P从点B出发,沿方向匀速运动,速度为.设运动时间为.解答下列问题:(1)当t为何值时,;(2)当中点在上时,求t的值;(3)设四边形的面积为,求S与t的函数关系式,并求S最小值.26.(2022·宁夏吴忠·校考一模)已知:如图,在中,,,,点从点出发,沿向点匀速运动,速度为;过点作,交于点,同时,点从点出发,沿向点匀速运动,速度为;当一个点停止运动时,另一个点也停止运动,连接.设运动时间为,解答下列问题:(1)当t为何值时,四边形为平行四边形?(2)设四边形的面积为y(cm2),试确定y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使?若存在,请说明理由,若存在,求出t的值.27.(2022·宁夏银川·银川唐徕回民中学校考三模)如图,在中,,边上的高,,分别是边,上的两个动点(点不与点、重合),与交于点,且,以为边,在点的下方做正方形.(1)当正方形的边在上时,求正方形的边长.(2)设,与正方形重叠部分的面积为,则当为何值时,有最大值,最大值是多少?28.(2022·四川绵阳·统考中考真题)如图,平行四边形ABCD中,DB=,AB=4,AD=2,动点E,F同时从A点出发,点E沿着A→D→B的路线匀速运动,点F沿着A→B→D的路线匀速运动,当点E,F相遇时停止运动.(1)如图1,设点E的速度为1个单位每秒,点F的速度为4个单位每秒,当运动时间为秒时,设CE与DF交于点P,求线段EP与CP长度的比值;(2)如图2,设点E的速度为1个单位每秒,点F的速度为个单位每秒,运动时间为x秒,ΔAEF的面积为y,求y关于x的函数解析式,并指出当x为何值时,y的值最大,最大值为多少?(3)如图3,H在线段AB上且AH=HB,M为DF的中点,当点E、F分别在线段AD、AB上运动时,探究点E、F在什么位置能使EM=HM.并说明理由.29.(2020·吉林长春·统考二模)如图,在△ABC中,∠BCA=90°,AB=5cm,BC=3cm.动点E从B出发沿线段BA方向以每秒1cm的速度向终点A运动.过点E作ED⊥BA交射线BC于点D,以DE和DC为邻边作平行四边形EDCF,过点D作DHCA,交射线BA于点H,过点H作HG⊥CA,交射线CA于点H.设点E的运动时间为t(秒).(1)直接写出CD的长度(用含t的代数式表示).(2)当点F落在DH上时,求t的值.(3)求平行四边形EDCF与矩形CDHG重合图形部分的面积S与时间t之间的函数解析式.(4)若DH将平行四边形EDCF分成两部分的面积之比为k,当0<k≤时,请直接写出t的取值范围.30.已知,如图,在中,,,.将与重合在一起,让在边BC上以每秒1个单位长度的速度从B向C运动(不含端点),且在运动过程中满足:DE始终经过点A,EF与AC交于点G.解决下列问题:(1)求证:;(2)当运动几秒时,为等腰三角形;(3)当线段AG最短时,求的面积.31.(2022·天津滨海新·统考二模)在平面直角坐标系中,为等边三角形,点在第二象限,点在轴负半轴上,为直角三角形,点在轴正半轴上,点在轴正半轴上,,,.(1)如图①,求点的坐标;(2)将沿轴向右平移,得到,点,,的对应点分别为,,,设,与重叠部分的面积为.①如图②,当与重叠的部分为四边形时,与相交于点,试用含有的式子表示,并直接写出的取值范围;②当时,求的取值范围(直接写出结果即可).32.如图,在矩形ABCD中,BC>CD,BC、CD分别是一元二次方程x2-7x+12=0的两个根,连接BD,并过点C作CN⊥BD,垂足为N,点P从B出发,以每秒1个单位的速度沿BD方向匀速运动到D为止;点M沿线段DA以每秒1个单位的速度由点D向点A匀速运动,到点A为止,点P与点M同时出发,设运动时间为t秒(t>0).(1)求线段CN的长;(2)在整个运动过程中,当t为何值时△PMN的面积取得最大值,最大值是多少?33.(2022·宁夏吴忠·校考一模)如图,在平面直角坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游产业发展趋势及策略分析
- 大五人格对在线学习效果的影响研究
- 抖音商户部门负责人选拔任用制度
- 抖音商户市场专员关键词投放审核制度
- 全民健身设施补短板工程实施方案在全民健身场地设施建设中的应用与对策研究
- 公交优先战略在城市交通拥堵治理中的2025年实施效果评估报告
- Carpetimycin-D-生命科学试剂-MCE
- 西安理工大学高科学院《生态水工学概论》2023-2024学年第一学期期末试卷
- 山东省枣庄市峄城区2025届九上化学期末达标检测试题含解析
- 衡水学院《森林水文学》2023-2024学年第一学期期末试卷
- 劳动教育与数学作业深度融合 全面培养学生的劳动素养
- 中国质谱仪行业发展趋势及发展前景研究报告2025-2028版
- 2025至2030中国直联式真空泵行业市场现状分析及竞争格局与投资发展报告
- 2025至2030中国无源光分路器行业发展趋势分析与未来投资战略咨询研究报告
- 痛风治疗与护理课件
- T/CCBD 19-2022品牌餐厅评价规范
- 河南省南阳市内乡县2025届数学七下期末调研试题含解析
- 校际结对帮扶协议书
- 第四版(2025)国际压力性损伤溃疡预防和治疗临床指南解读
- 企业电工面试题及答案
- 仓库与生产线的有效对接计划
评论
0/150
提交评论