专题04 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)_第1页
专题04 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)_第2页
专题04 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)_第3页
专题04 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)_第4页
专题04 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题04旋转中的三种全等模型(手拉手、半角、对角互补模型)本专题重点分析旋转中的三类全等模型(手拉手、半角、对角互补模型),结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力。模型1.手拉手模型【模型解读】将两个三角形(或多边形)绕着公共顶点旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等。其中:公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。手拉模型解题思路:SAS型全等(核心在于导角,即等角加(减)公共角)。1)双等边三角形型条件:△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。2)双等腰直角三角形型条件:△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。3)双等腰三角形型条件:△ABC和△DCE均为等腰三角形,C为公共点;连接BE,AD交于点F。结论:①△ACD≌△BCE;②BE=AD;③∠ACM=∠BFM;④CF平分∠AFD。4)双正方形形型条件:△ABCFD和△CEFG都是正方形,C为公共点;连接BG,ED交于点N。结论:①△△BCG≌△DCE;②BG=DE;③∠BCM=∠DNM=90°;④CN平分∠BNE。例1.(2022·湖北武汉·八年级期末)已知ABC中,∠BAC=60°,以AB和BC为边向外作等边ABD和等边BCE.(1)连接AE、CD,如图1,求证:AE=CD;(2)若N为CD中点,连接AN,如图2,求证:CE=2AN(3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM=_______(直接写出结果)【答案】(1)见解析(2)见解析(3)【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论;(2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AND,进而判断出∠BAC=∠ACF,即可判断出△ABC≌△CFA,即可得出结论;(3)先判断出△ABC≌△HEB(ASA),得出,,再判断出△ADM≌△HEM(AAS),得出AM=HM,即可得出结论.(1)解:∵△ABD和△BCE是等边三角形,∴BD=AB,BC=BE,∠ABD=∠CBE=60°,∴∠ABD+∠ABC=∠CBE+∠ABC,∴∠DBC=∠ABE,∴△ABE≌△DBC(SAS),∴AE=CD;(2)解:如图,延长AN使NF=AN,连接FC,∵N为CD中点,∴DN=CN,∵∠AND=∠FNC,∴△ADN≌△FCN(SAS),∴CF=AD,∠NCF=∠AND,∵∠DAB=∠BAC=60°∴∠ACD+∠ADN=60°∴∠ACF=∠ACD+∠NCF=60°,∴∠BAC=∠ACF,∵△ABD是等边三角形,∴AB=AD,∴AB=CF,∵AC=CA,∴△ABC≌△CFA(SAS),∴BC=AF,∵△BCE是等边三角形,∴CE=BC=AF=2AN;(3)解:∵△ABD是等边三角形,∴,∠BAD=60°,在Rt△ABC中,∠ACB=90°-∠BAC=30°,∴,如图,过点E作EH//AD交AM的延长线于H,∴∠H=∠BAD=60°,∵△BCE是等边三角形,∴BC=BE,∠CBE=60°,∵∠ABC=90°,∴∠EBH=90°-∠CBE=30°=∠ACB,∴∠BEH=180°-∠EBH-∠H=90°=∠ABC,∴△ABC≌△HEB(ASA),∴,,∴AD=EH,∵∠AMD=∠HME,∴△ADM≌△HEM(AAS),∴AM=HM,∴∵,,∴.故答案为:.【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.例2.(2023·湖南·长沙市八年级阶段练习)如图1,在Rt△ABC中,∠B=90°,AB=BC=4,点D,E分别为边AB,BC上的中点,且BD=BE=.(1)如图2,将△BDE绕点B逆时针旋转任意角度α,连接AD,EC,则线段EC与AD的关系是;(2)如图3,DE∥BC,连接AE,判断△EAC的形状,并求出EC的长;(3)继续旋转△BDE,当∠AEC=90°时,请直接写出EC的长.【答案】(1)EC=AD,EC⊥AD(2)等腰三角形,(3)【分析】(1)延长CE交AD于F,交AB于O,证明△ABD≌△CBE(SAS),得∠BCE=∠BAD,CE=AD,再由∠AOF=∠BOC,可得∠AFC=∠ABC=90°,即可得到结论;(2)设DE与AB的交点为H,可得AB是DE的垂直平分线,利用勾股定理可求出AE的长,由(1)知CE=AD,从而得出答案;(3)分当点E在BC上方时和当点E在BC下方时,分别画图,利用勾股定理计算即可.(1)EC与AD垂直且相等,理由如下:延长CE交AD于F,交AB于O,∵△BDE和△ABC都是等腰直角三角形,∴BD=BE,AB=BC,∠DBE=∠ABC=90°,∴∠ABD=∠CBE,∴△ABD≌△CBE(SAS),∴∠BCE=∠BAD,CE=AD,∵∠AOF=∠BOC,∴∠AFE=∠ABC=90°,∴AD⊥CE,∴故答案为:EC=AD,EC⊥AD;(2)设DE与AB的交点为H,∵DE∥BC,∴∠AHE=∠ABC=90°,∵BD=BE,∴AB是DE的垂直平分线,∴AD=AE,由(1)知AD=CE,∴AE=CE,∴△ACE是等腰三角形,∵BE=,∴BH=HE=1,∴AH=AB﹣BH=4﹣1=3,在Rt△AHE中,由勾股定理得:AE=,∴CE=AE=;(3)如图4,当点E在BC上方时,过点B作BG⊥DE于G,∵∠AEC=90°,CE⊥AD,∴A、E、D三点共线,∴AG=,∴AD=AG+DG=,∴CE=AD=+1;如图,当点E在BC下方时,同理可得CE=CG﹣GE=﹣1.综上:CE=+1或﹣1.【点睛】本题主要考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,旋转的性质,勾股定理等知识,根据前面探索的结论解决新的问题是解题的关键.例3.(2022·黑龙江·虎林市九年级期末)已知Rt△ABC中,AC=BC,∠ACB=90°,F为AB边的中点,且DF=EF,∠DFE=90°,D是BC上一个动点.如图1,当D与C重合时,易证:CD2+DB2=2DF2;(1)当D不与C、B重合时,如图2,CD、DB、DF有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当D在BC的延长线上时,如图3,CD、DB、DF有怎样的数量关系,请写出你的猜想,并加以证明.【答案】(1)CD2+DB2=2DF2;(2)CD2+DB2=2DF2,证明见解析【分析】(1)由已知得,连接CF,BE,证明得CD=BE,再证明为直角三角形,由勾股定理可得结论;(2)连接CF,BE,证明得CD=BE,再证明为直角三角形,由勾股定理可得结论.【详解】解:(1)CD2+DB2=2DF2证明:∵DF=EF,∠DFE=90°,∴∴连接CF,BE,如图∵△ABC是等腰直角三角形,F为斜边AB的中点∴,即∴,又∴在和中∴∴,∴∴∵,∴CD2+DB2=2DF2;(2)CD2+DB2=2DF2证明:连接CF、BE∵CF=BF,DF=EF又∵∠DFC+∠CFE=∠EFB+∠CFB=90°∴∠DFC=∠EFB∴△DFC≌△EFB

∴CD=BE,∠DCF=∠EBF=135°∵∠EBD=∠EBF-∠FBD=135°-45°=90°在Rt△DBE中,BE2+DB2=DE2∵DE2=2DF2∴CD2+DB2=2DF2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题.例4.(2022·山西大同·九年级期中)综合与实践:已知是等腰三角形,.(1)特殊情形:如图1,当∥时,______.(填“>”“<”或“=”);(2)发现结论:若将图1中的绕点顺时针旋转()到图2所示的位置,则(1)中的结论还成立吗?请说明理由.(3)拓展运用:某学习小组在解答问题:“如图3,点是等腰直角三角形内一点,,且,,,求的度数”时,小明发现可以利用旋转的知识,将绕点顺时针旋转90°得到,连接,构造新图形解决问题.请你根据小明的发现直接写出的度数.【答案】(1)=;(2)成立,理由见解析;(3)∠BPA=135°.【分析】(1)由DE∥BC,得到∠ADE=∠B,∠AED=∠C,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△APB≌△AEC,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEC是直角三角形,在简单计算即可.【详解】解:(1)∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∵AB=AC,∴∠B=∠C,∴∠ADE=∠AED,∴AD=AE,∴DB=EC,故答案为:=;(2)成立.证明:由①易知AD=AE,∴由旋转性质可知∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE;(3)如图,将△APB绕点A旋转90°得△AEC,连接PE,∴△APB≌△AEC,∴AE=AP=2,EC=BP=1,∠PAE=90°,∴∠AEP=∠APE=45°,在Rt△PAE中,由勾股定理可得,PE=2,在△PEC中,PE2=(2)2=8,CE2=12=1,PC2=32=9,∵PE2+CE2=PA2,∴△PEC是直角三角形,∴∠PEC=90°,∴∠AEC=135°,又∵△APB≌△AEC,∴∠BPA=∠CEA=135°.【点睛】本题主要考查了旋转的性质,平行线的性质,全等三角形的性质和判定,勾股定理及其逆定理,解本题的关键是构造全等三角形,也是本题的难点.例5.(2023春·浙江·八年级专题练习)边长为4的正方形ABCD与边长为2的正方形CEFG如图1摆放,将正方形CEFG绕点C顺时针旋转,旋转角为α,连接BG,DE.(1)如图2,求证:△BCG≌△DCE;(2)如图2,连接DG,BE,判断DG2+BE2否为定值.若是,求这个定值若不是,说明理由;(3)如图3,当点G恰好落在DE上时,求α的值.【答案】(1)见解析;(2)48;(3)【分析】(1)通过边角边判定三角形全等;(2)连接,设交于点,交于点,先证明,由勾股定理可得;(3)作于点,则,且,由含30度角的直角三角形的性质求解.【详解】(1)四边形与为正方形,,,,,,在和中,(SAS),(2)连接,设交于点,交于点,,,,在△和中,,,,,由勾股定理得,,,,,,,(3)作于点,如图,△为等腰直角三角形,,且,在中,,,,..【点睛】本题考查四边形与三角形的综合问题,解题关键是熟练掌握正方形与直角三角形的性质,通过添加辅助线求解.模型2.半角模型【模型解读】半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半思想方法:通过旋转构造全等三角形,实现线段的转化1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。2)等腰直角三角形半角模型条件:ABC是等腰直角三角形,∠DAE=45°;结论:①△BAD≌△CAG;②△DAE≌△GAE;③∠ECG==90°;④DE2=BD2+EC2;3)等边三角形半角模型(120°-60°型)条件:ABC是等边三角形,BDC是等腰三角形,且BD=CD,∠BDC=120°,∠EDF=60°;结论:①△BDE≌△CDG;②△EDF≌△GDF;③EF=BE+FC;④AEF的周长=2AB;⑤DE、DF分别平分∠BEF和∠EFC。4)等边三角形半角模型(60°-30°型)条件:ABC是等边三角形,∠EAD=30°;结论:①△BDA≌△CFA;②△DAE≌△FAE;③∠ECF=120°;④DE2=(BD+EC)2+;5)任意角度的半角模型(-型)条件:∠BAC=,AB=AC,∠DAE=;结论:①△BAD≌△CAF;②△EAD≌△EAF;③∠ECF=180°-。例1.(2023·福建·龙岩九年级期中)(1)【发现证明】如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是_____(不要求证明).(3)【联想拓展】如图1,若正方形的边长为6,,求的长.【答案】(1)见解析;(2)①不成立,结论:;②,见解析;(3)【分析】(1)证明,可得出,则结论得证;(2)①将绕点顺时针旋转至根据可证明,可得,则结论得证;②将绕点逆时针旋转至,证明,可得出,则结论得证;(3)求出,设,则,,在中,得出关于的方程,解出则可得解.【详解】(1)证明:把绕点顺时针旋转至,如图1,,,,,,,三点共线,,,,,,,,;(2)①不成立,结论:;证明:如图2,将绕点顺时针旋转至,,,,,,,,;②如图3,将绕点逆时针旋转至,,,,,,,,,.即.故答案为:.(3)解:由(1)可知,正方形的边长为6,,.,,设,则,,在中,,,解得:.,.【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.例2.(2023·辽宁·沈阳八年级阶段练习)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,AN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分点.(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=5,求BN的长;(2)如图2,在Rt△ABC中,∠ACB=90°,AC=BC,点M,N在斜边AB上,∠MCN=45°,则点M、N是线段AB的勾股分割点吗?(直接回答:“是”或“不是”)若是说明理由,当AM=2,MN=4,则BN=.【答案】(1)或;(2)是,理由见解析;【分析】(1)分两种情况讨论,根据勾股分割点定义可求BN的长;(2)过点A作AD⊥AB,且AD=BN,由题意可证△ADC≌△BNC,可得CD=CN,∠ACD=∠BCN,可求∠MCD=∠MCN,则可证△MDC≌△MNC,可得MN=DM,根据勾股定理可得BN2+AM2=MN2,则点M,N是线段AB的勾股分割点,将的值代入即可求得的值;【详解】(1)AM=3,MN=5,分两种情况:①当MN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN=,②当BN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN=,综上所述:BN的长为或;(2)点M,N是线段AB的勾股分割点;理由如下,如图,过点A作AD⊥AB,且AD=BN,∵AD=BN,∠DAC=∠B=45°,AC=BC,∴△ADC≌△BNC(SAS),∴CD=CN,∠ACD=∠BCN,∵∠MCN=45°,∴∠DCA+∠ACM=∠ACM+∠BCN=45°,∴∠MCD=∠MCN,且CD=CN,CM=CM,∴△MDC≌△MNC(SAS),∴MN=DM,在Rt△MDA中,AD2+AM2=DM2,∴BN2+AM2=MN2,∴点M,N是线段AB的勾股分割点;当时,故答案为:是,【点睛】本题是三角形的综合题,考查了新定义“勾股分割点”、勾股定理、等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.例3.(2023秋·湖北武汉·九年级校考阶段练习)如图,在△ABC中,AB=AC=2.∠BAC=120°,点D,E都在边BC上,∠DAE=60°,若BD=2CE,求DE的长.【答案】DE=3﹣3.【分析】将绕点A逆时针旋转120°得到,取CF的中点G,连接EF、EG,由AB=AC、,可得出,根据旋转的性质可得出,结合可得出为等边三角形,进而得出为直角三角形,通过解直角三角形求出的长度以及证明全等找出,设,则,,在中利用勾股定理可得出,利用,可求出以及的值;【详解】解:将绕点A逆时针旋转120°得到,取的中点G,连接,如图所示:过点作于点,如图,∵,,∴,在中,,∴,∴,∴,∴,∴.∵,∴,∴为等边三角形,∴,∴,∴为直角三角形,∵,∴,∴.在和中,,∴,∴.设,则,在中,,=x,∴,∴,∴,答:的长为.【点睛】本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x的一元二次方程是解题的关键.例4.(2023·绵阳市八年级期中)在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系.(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(1)问的结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.【答案】(1);(2)成立,;(3),见解析【分析】(1)由DM=DN,∠MDN=60°可得△MDN是等边三角形,得到Rt△BDM≌Rt△CDN,然后由直角三角形的性质即可求解;(2)在CN的延长线上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,得到∠M1DN=∠MDN=60°,从而得到△MDN≌△M1DN(SAS),即可求证;(3)在CN上截取CM1=BM,连接DM1,可证得△MDN≌△M1DN,即可求证.【详解】(1)解:BM、NC、MN之间的数量关系BM+NC=MN.∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠BDC=∠DCB=30°,∴∠MBD=∠NCD=90°,在Rt△BDM和Rt△CDN中,,∴Rt△BDM≌Rt△CDN(HL),∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN,故答案为:BM+NC=MN;(2)猜想:结论仍然成立.证明:在CN的延长线上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1(SAS),∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN(SAS),∴MN=M1N=M1C+NC=BM+NC;(3)NC−BM=MN,理由如下:证明:在CN上截取CM1=BM,连接MN,DM1由(2)得,△DBM≌△DCM1,∴DM=DM1,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN(SAS),∴MN=M1N,∴NC﹣BM=MN.【点睛】本题考查了等边三角形,直角三角形,等腰三角形的性质以及全等三角形的判定与性质等知识,解题的关键是注意数形结合思想的应用,作出合适的辅助线,构造出全等三角形.例5.(2023·重庆市二模)回答问题(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.【答案】(1)∠BAE+∠FAD=∠EAF;(2)仍成立,理由见解析;(3)∠EAF=180°-∠DAB【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF,据此得出结论;(2)延长FD到点G,使DG=BE,连接AG,先判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)在DC延长线上取一点G,使得DG=BE,连接AG,先判定△ADG≌△ABE,再判定△AEF≌△AGF,得出∠FAE=∠FAG,最后根据∠FAE+∠FAG+∠GAE=360°,推导得到2∠FAE+∠DAB=360°,即可得出结论.【详解】解:(1)∠BAE+∠FAD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,∵∠B=∠ADF=90°,∠ADG=∠ADF=90°,∴∠B=∠ADG=90°,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;故答案为:∠BAE+∠FAD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°-∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=180°-∠DAB.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定以及全等三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等.模型3、旋转中的对角互补模型【模型解读】对角互补模型概念:对角互补模型特指四边形中,存在一对对角互补,而且有一组邻边相等的几何模型。思想方法:解决此类问题常用的辅助线画法主要有两种:①过顶点做双垂线,构造全等三角形;②进行旋转的构造,构造手拉手全等。1)“共斜边等腰直角三角形+直角三角形”模型(异侧型)条件:如图,已知∠AOB=∠DCE=90°,OC平分∠AOB.结论:①CD=CE,②OD+OE=OC,③.2)“斜边等腰直角三角形+直角三角形”模型(同侧型)条件:如图,已知∠DCE的一边与AO的延长线交于点D,∠AOB=∠DCE=90°,OC平分∠AOB.结论:①CD=CE,②OE-OD=OC,③.3)“等边三角形对120°模型”(1)条件:如图,已知∠AOB=2∠DCE=120°,OC平分∠AOB.结论:①CD=CE,②OD+OE=OC,③.4)“等边三角形对120°模型”(2)条件:如图,已知∠AOB=2∠DCE=120°,OC平分∠AOB,∠DCE的一边与BO的延长线交于点D,结论:①CD=CE,②OD-OE=OC,③.5)“120°等腰三角形对60°模型”条件:△ABC是等腰三角形,且∠BAC=120°,∠BPC=60°。结论:①PB+PC=PA;例1.(2022秋·江苏·八年级专题练习)在△ABC中,∠BAC=90°,AB=AC,D为BC的中点.(1)如图1,E、F分别是AB、AC上的点,且BE=AF、求证:△DEF是等腰直角三角形经过分析已知条件AB=AC,D为BC的中点.容易联想等腰三角形三线合一的性质,因此,连结AD(如图2),以下是某同学由已知条件开始,逐步按层次推出结论的流程图.请帮助该同学补充完整流程图.补全流程图:①,②∠EDF=(2)如果E、F分别为AB、CA延长线上的点,仍有BE=AF,其他条件不变,试猜想△DEF是否仍为等腰直角三角形?请在备用图中补全图形、先作出判断,然后给予证明.【答案】(1)△BDE,△ADF,90°;(2)△DEF仍为等腰直角三角形,理由见解析【分析】(1)连接AD,根据∠BAC=90°,AB=AC,D为BC的中点,可以得到∠B=∠C=45°,AD⊥BC,,,从而可以证明△BDE≌△ADF(SAS),得到DE=DF,∠BDE=∠ADF,由∠ADE+∠BDE=∠BDA=90°,可得∠ADE+∠ADF=90°,即∠EDF=90°,即可证明;(2)连接AD,同样证明△BDE≌△ADF(SAS),得到DE=DF,∠BDE=∠ADF,再由∠ADF+∠BDF=∠BDA=90°,即可得到∠BDE+∠BDF=90°,即∠EDF=90°,即可证明.【详解】解:(1)如图所示,连接AD,∵∠BAC=90°,AB=AC,D为BC的中点,∴∠B=∠C=45°,AD⊥BC,,,∴∠B=∠BAD=∠CAD,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF,∵∠ADE+∠BDE=∠BDA=90°,∴∠ADE+∠ADF=90°,即∠EDF=90°,∴△DEF是等腰直角三角形;故答案为:△BDE,△ADF,90°;(2)△DEF仍为等腰直角三角形,理由如下:连接AD,∵∠BAC=90°,AB=AC,D为BC的中点,∴∠ABC=∠C=45°,AD⊥BC,,,∴∠FAD=180°-∠CAD=135°,∠EBD=180°-∠ABC=135°,∴∠FAD=∠EBD,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF,∵∠ADF+∠BDF=∠BDA=90°,∴∠BDE+∠BDF=90°,即∠EDF=90°,∴△DEF是等腰直角三角形.【点睛】本题主要考查了全等三角形的性质与判定,等腰直角三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.例2.(2022·山东枣庄·中考模拟)在中,,,于点,(1)如图1,点,分别在,上,且,当,时,求线段的长;(2)如图2,点,分别在,上,且,求证:;(3)如图3,点在的延长线上,点在上,且,求证:;【答案】(1);(2)见解析;(3)见解析.【分析】(1)根据等腰三角形的性质、直角三角形的性质得到AD=BD=DC=,求出∠MBD=30°,根据勾股定理计算即可;(2)证明△BDE≌△ADF,根据全等三角形的性质证明;(3)过点M作ME∥BC交AB的延长线于E,证明△BME≌△AMN,根据全等三角形的性质得到BE=AN,根据等腰直角三角形的性质、勾股定理证明结论.【详解】(1)解:,,,,,,,,,,,,由勾股定理得,,即,解得,,;(2)证明:,,,在和中,,;(3)证明:过点作交的延长线于,,则,,,,,,在和中,,,,.【点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.例3.(2022秋·四川绵阳·九年级校联考阶段练习)已知,,是过点的直线,过点作于点,连接.(1)问题发现:如图(1),过点作,与交于点,、、之间的数量关系是什么?并给予证明.(2)拓展探究:当绕点旋转到如图(2)位置时,、、之间满足怎样的数量关系?请写出你的猜想,并给予证明.【答案】(1);证明见解析(2);证明见解析【分析】(1)过点作,得到,判断出,确定为等腰直角三角形即可得出结论;(2)过点作于点,判断出,确定为等腰直角三角形,即可得出结论.【详解】(1)解:如图1,过点作交于点,,,,,在四边形中,,,,∴,,,,,,是等腰直角三角形,,,∴;(2);理由:如图,过点作交于点,,,,,,,,,,,,,,是等腰直角三角形,,,∴;【点睛】本题考查了全等三角形的性质与判定,等腰直角三角形的性质与判定,勾股定理,构造全等三角形是解题的关键.例4.(2023四川宜宾八年级期末)如图1,,平分,以为顶点作,交于点,于点E.(1)求证:;(2)图1中,若,求的长;(3)如图2,,平分,以为顶点作,交于点,于点.若,求四边形的面积.【答案】(1)见解析;(2)OD+OE=;(3)【分析】(1)过点C作CG⊥OA于G,CH⊥OB于H,然后根据题意利用AAS定理进行证明△CDG≌△CEH,从而求解;(2)根据全等三角形的性质得到OD+OE=2OH,然后利用勾股定理求OH的值,从而求解;(3)过点C作CG⊥OA于G,CH⊥OB于H,然后根据题意利用AAS定理进行证明△CDG≌△CEH,从而求得==2,然后利用含30°的直角三角形性质求得OH=,CH=从而求得三角形面积,使问题得到解决.【详解】解:(1)如图,过点C作CG⊥OA于G,CH⊥OB于H,∵平分∴CG=CH

∵,

∴∠CDO+∠CEO=180︒∵∠CDG+∠CDO=180︒∴∠CDG=∠CEO在△CDG与△CEH中∴△CDG≌△CEH(AAS)∴(2)由(1)得△CDG≌△CEH∴DG=HE由题易得△OCG与△OCH是全等的等腰直角三角形,且OG=OH∴OD+OE=OD+OH+HE=OG+OH=2OH设OH=CH=x,在Rt△OCH中,由勾股定理,得:OH2+CH2=OC2∴∴(舍负)∴OH=∴OD+OE=2OH=(3)如图,过点C作CG⊥OA于G,CH⊥OB于H,∵平分∴CG=CH∵,∴∠CDO+∠CEO=180︒∵∠CDG+∠CDO=180︒∴∠CDG=∠CEO在△CDG与△CEH中∴△CDG≌△CEH(AAS)∴DG=HE由题易得△OCG与△OCH是全等的直角三角形,且OG=OH∴OD+OE=OD+OH+HE=OG+OH=2OH∴==2在Rt△OCH中,有∠COH=60°,OC=3,∴OH=,CH=∴∴=2=【点睛】本题考查全等三角形的性质及判定,含30°直角三角形的性质以及勾股定理,是一道综合性问题,掌握相关知识点灵活应用解题是本题的解题关键.例5.(2023湖北省宜城市八年级期末)如图,已知∠AOB=120°,在∠AOB的平分线OM上有一点C,将一个60°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.【答案】(1)详见解析;(2)(1)中结论仍然成立,理由详见解析;(3)(1)中结论不成立,结论为OE﹣OD=OC,证明详见解析.【分析】(1)根据OM是∠AOB的角平分线,可得∠AOB=60°,则∠OCE=30°,再根据30°所对直角边是斜边的一半,得出OD=OC,同理:OE=OC,即可得出结论;(2)同(1)的方法得到OF+OG=OC,再根据AAS证明△CFD≌△CGE,得出DF=EG,则OF=OD+DF=OD+EG,OG=OE﹣EG,OF+OG=OD+OE,即可得出结论.(3)同(2)的方法得到DF=EG,根据等量代换可得OE﹣OD=OC.【详解】(1)∵OM是∠AOB的角平分线,∴∠AOC=∠BOC=∠AOB=60°,∵CD⊥OA,∴∠ODC=90°,∴∠OCD=30°,∴∠OCE=∠DCE﹣∠OCD=30°,在Rt△OCD中,OD=OC,同理:OE=OC,∴OD+OE=OC,(2)(1)中结论仍然成立,理由:过点C作CF⊥OA于F,CG⊥OB于G,如图,∴∠OFC=∠OGC=90°,∵∠AOB=120°,∴∠FCG=60°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=60°,∠FCG=60°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=OD+DF=OD+EG,OG=OE﹣EG,∴OF+OG=OD+EG+OE﹣EG=OD+OE,∴OD+OE=OC;(3)(1)中结论不成立,结论为:OE﹣OD=OC,理由:过点C作CF⊥OA于F,CG⊥OB于G,如图,∴∠OFC=∠OGC=90°,∵∠AOB=120°,∴∠FCG=60°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=60°,∠FCG=60°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=DF﹣OD=EG﹣OD,OG=OE﹣EG,∴OF+OG=EG﹣OD+OE﹣EG=OE﹣OD,∴OE﹣OD=OC.【点睛】本题考查了角平分线的性质定理,全等三角形的判定和性质,直角三角形的性质.正确作辅助线是解题的关键.课后专项训练1.(2022·湖南·中考真题)如图,点是等边三角形内一点,,,,则与的面积之和为(

)A. B. C. D.【答案】C【分析】将绕点B顺时针旋转得,连接,得到是等边三角形,再利用勾股定理的逆定理可得,从而求解.【详解】解:将绕点顺时针旋转得,连接,,,,是等边三角形,,∵,,,,与的面积之和为.故选:C.【点睛】本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将与的面积之和转化为,是解题的关键.2.(2022·成都市·八年级期末)如图,在边长为4的正方形ABCD中,对角线AC,BD交于点O,E在BD上,连接CE,作EF⊥CE交AB于点F,交AC于点G,连接CF交BD于点H,延长CE交AD于点M,连接FM,则下列结论:①点E到AB,BC的距离相等;②∠FCE=45°;③∠DMC=∠FMC;④若DM=2,则BF=.正确的有()个.A.1 B.2 C.3 D.4【答案】C【分析】过E点作、,由正方形对角线平分每一组对角以及角平分线性质可得点E到AB,BC的距离相等,故①正确;再证明(AAS)可得是等腰直角三角形,得,故②正确;然后延长MD至P,使,(SAS)再证明(SAS)即可得,故③正确;由全等三角形性质和勾股定理列方程可求.【详解】解:如图1,过E点作、,∴,∵在正方形ABCD中,,,∴,即点E到AB,BC的距离相等,故①正确;;∴,由∵,∴,∴,∴(AAS)∴,∴,故②正确;如图2,延长MD至P,使,连接,易证(SAS)∴,,∵,∴,∴,又∵,∴,∴,∴,,故③正确,在边长为4的正方形ABCD中,,若,则,设,则,,在中,∴,解得:,故;④错误,综上所述,正确的①②③,故选C.【点睛】本题主要考查了正方形和三角形综合知识,解题关键是构造全都三角形转换边角关系.3.(2023·广东深圳·八年级期末)如图,△ABC中,∠BAC=120°,AB=AC,点D为BC边上一点.点E为线段CD上一点,且CE=2,AB=,∠DAE=60°,则DE的长为______.【答案】【分析】将绕点A逆时针旋转至,连接ME,过M作于Q,过A作于F,由旋转的性质得,设,则,,证明,得,最后利用勾股定理来解答.【详解】解:如图,将绕点A逆时针旋转至,连接ME,过M作于Q,过A作于F,∵,,,AB=,∴,,∴,,∴,.在中,.∵,∴.设,∴,,∴.∵,,∴,∴.∵.在和中,∴,∴,由勾股定理得:,∴,∴,即.故答案为:.【点睛】本题考查含30°角的直角三角形的性质,等腰三角形的性质,全等三角形有判定和性质,勾股定理,旋转的性质,作辅助线构造直角三角形是求解本题的关键.4.(2023·吉林松原·九年级统考期中)如图,点O是等边三角形ABC内的一点,,将△BOC绕点C顺时针旋转60°得△ADC,连接OD.(1)当时,°;(2)当时,°;(3)若,,,则OA的长为.【答案】(1)40;(2)60;(3)【分析】(1)证明△COD是等边三角形,得到∠ODC=60°,即可得到答案;(2)利用∠ADC-∠ODC求出答案;(3)由△BOC≌△ADC,推出∠ADC=∠BOC=150°,AD=OB=8,根据△COD是等边三角形,得到∠ODC=60°,OD=,证得△AOD是直角三角形,利用勾股定理求出.【详解】(1)解:∵CO=CD,∠OCD=60°,∴△COD是等边三角形;∴∠ODC=60°,∵∠ADC=∠BOC=,∴∠ADC-∠ODC=40°,故答案为:40;(2)∵∠ADC=∠BOC=,∴∠ADC-∠ODC=60°,故答案为:60;(3)解:当,即∠BOC=150°,∴△AOD是直角三角形.∵△BOC≌△ADC,∴∠ADC=∠BOC=150°,AD=OB=8,又∵△COD是等边三角形,∴∠ODC=60°,OD=,∴∠ADO=90°,即△AOD是直角三角形,∴,故答案为:.【点睛】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.5.(2023·江苏南京·九年级专题练习)(1)阅读理解:如图1,在正方形ABCD中,若E,F分别是CD,BC边上的点,∠EAF=45°,则我们常会想到:把△ADE绕点A顺时针旋转90°得到△ABG.易证△AEF≌_______,得出线段BF,DE,EF之间的数量关系为____________;(2)类比探究:如图2,在等边△ABC中,D,E为BC边上的点,∠DAE=30°,BD=3,EC=4,求线段DE的长;(3)拓展应用:如图3,在△ABC中,AB=AC,∠BAC=150°,点D,E在BC边上,∠DAE=75°,若DE是等腰△ADE的腰长,请直接写出BD:CE的值.【答案】(1);;(2);(3)或【分析】(1)由旋转的性质可得,,,进而得到,由全等三角形的性质可得,即可解答;(2)将绕点顺时针旋转,得到,连接,过点作,交的延长线于点,进而证≌,得到,即可求出和,再根据勾股定理即可解答;(3)用的方法,分类讨论是等腰的腰长,求出:的值即可.【详解】解:(1)把绕点顺时针旋转得到,可知:,,,,,在和中,≌,,,,故答案为;.(2)如图,将△ACE绕点A顺时针旋转60°,得到△ABF,连接DF,过点F作FG⊥BC,交CB的延长线于点G,如图所示:∵△ABC是等边三角形,∴∠CAB=∠ABC=∠C=60°,AB=AC,∵∠DAE=30°,∴∠CAE+∠BAD=30°,∴∠DAF=30°,又∵AD=AD,∴△ADE≌△ADF,∴DE=DF,∵∠ABF=∠ABC=∠C=60°,∠FBG=60°,∵BF=CE=4,∠G=90°,∴BG=BF=2,FG==,∴DG=5,∴在Rt△DFG中,DF=,∴线段DF的长为.(3)如图,将△ACE绕点A顺时针旋转150°,得到△ABG,连接DG,过点D作DH⊥BG,交BG的于点H,∠DAE=75°,若DE是等腰△ADE的腰,∠ADE为顶角,则∠ADE=30°,∵AB=AC,∠BAC=150°,∴∠ABC=∠C=(180°-150°)=15°,∴由旋转性质得△ABG≌△ACE,∴BG=CE,AG=AE,∠ABG=∠C=15°,∴∠DBG=30°,∵将△ACE绕点A顺时针旋转150°,得到△ABG,∴∠EAG=150°,∵∠DAE=75°,∴∠GAD=75°,∴∠ADE=30°,在△ADE和△ADG中,,∴△ADE≌△ADG,∴∠GDA=∠ADE=30°,∴∠GDE=60°,∵∠GDE=∠GBD+∠BGD,∴∠BGD=60°-30°=30°,∴BD=DG,∴BH=GH=BG=CE,在Rt△BHD中,设HD=x,∵∠DBG=30°,∴BD=2x,由勾股定理得:BH=,∴BG=2,∴CE=2,∴BD:CE=:3;如图将△ACE绕点A顺时针旋转150°,得到△ABM,连接DM,过点M作MN⊥BD,交BD于点N,∵∠DAE=75°,若DE是等腰△ADE的腰长,∠E为顶角,∴∠E=30°,∵AB=AC,∠BAC=150°,∴∠C=∠ABC=15°,∴∠CAE=15°,∴AE=CE=DE,∴∠BAD=150°-75°-15°=60°,由旋转性质可知△ABM≌△ACE,∴∠BAM=∠CAE=15°,∠ABM=∠ACE=15°,AM=AE,BM=CE,∴∠MAD=15°+60°=75°=∠DAE,在△MAD和△EAD中,,∴△MAD≌△EAD,∴DM=DE=CE=BM,∵MN⊥BD,∴BN=DN=BD,∵∠MBD=∠ABM+∠ABC=15°+15°=30°,∴在Rt△BNM中,设MN=a,∴BM=2a,∴CE=2a,由勾股定理得:BN=,∴BD=2a,∴BD:CE=2a:2a=:1=.【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.6.(2023.成都市八年级期中)在中,,,于点,(1)如图1,点,分别在,上,且,当,时,求线段的长;(2)如图2,点,分别在,上,且,求证:;(3)如图3,点在的延长线上,点在上,且,求证:;【答案】(1);(2)见解析;(3)见解析.【分析】(1)根据等腰三角形的性质、直角三角形的性质得到AD=BD=DC=,求出∠MBD=30°,根据勾股定理计算即可;(2)证明△BDE≌△ADF,根据全等三角形的性质证明;(3)过点M作ME∥BC交AB的延长线于E,证明△BME≌△AMN,根据全等三角形的性质得到BE=AN,根据等腰直角三角形的性质、勾股定理证明结论.【详解】(1)解:,,,,,,,,,,,,由勾股定理得,,即,解得,,;(2)证明:,,,在和中,,;(3)证明:过点作交的延长线于,,则,,,,,,在和中,,,,.【点拨】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.7.如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD=BD.(2)探究证明:将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明;【答案】(1);(2)AD﹣DC=BD;【分析】(1)根据全等三角形的性质求出DC,AD,BD之间的数量关系(2)过点B作BE⊥BD,交MN于点E.AD交BC于O,证明,得到,,根据为等腰直角三角形,得到,再根据,即可解出答案.【详解】解:(1)如图1中,由题意:,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵是等腰直角三角形,∴DE=BD,∴DC+AD=BD,故答案为.(2).证明:如图,过点B作BE⊥BD,交MN于点E.AD交BC于O.∵,∴,∴.∵,,,∴,∴.又∵,∴,∴,,∴为等腰直角三角形,.∵,∴.【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.8.如图,已知∠DCE与∠AOB,OC平分∠AOB.(1)如图1,∠DCE与∠AOB的两边分别相交于点D、E,∠AOB=∠DCE=90°,试判断线段CD与CE的数量关系,并说明理由.以下是小宇同学给出如下正确的解法:解:CD=CE.理由如下:如图1,过点C作CF⊥OC,交OB于点F,则∠OCF=90°,…请根据小宇同学的证明思路,写出该证明的剩余部分.(2)你有与小宇不同的思考方法吗?请写出你的证明过程.(3)若∠AOB=120°,∠DCE=60°.①如图3,∠DCE与∠AOB的两边分别相交于点D、E时,(1)中的结论成立吗?为什么?线段OD、OE、OC有什么数量关系?说明理由.②如图4,∠DCE的一边与AO的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段OD、OE、OC有什么数量关系;如图5,∠DCE的一边与BO的延长线相交时,请回答(1)中的结论是否成立,并请直接写出线段OD、OE、OC有什么数量关系.解:(1)∵OC平分∠AOB,∴∠AOC=∠BOC=45°,且∠OCF=90°,∴∠OFC=45°=∠BOC,∴OC=FC,∵∠DCE=∠OCF=90°,∴∠DCO=∠ECF,且CO=CF,∠AOC=∠CFE=45°,∴△CDO≌△CEF(ASA)∴CD=CE(2)如图2,过点C作CM⊥OA,CN⊥OB,垂足分别为M,N,∴∠CMD=∠CNE=90°,又∵OC平分∠AOB,∴CM=CN,在四边形ODCE中,∠AOB+∠DCE+∠CDO+∠CEO=360°,又∵∠AOB=∠DCE=90°,∴∠CDO+∠CEO=180°,又∵∠CDO+∠CDM=180°,∴∠CEO=∠CDM,且∠CMD=∠CNE,CM=CN,∴△CMD≌△CNE(AAS),∴CD=CE.(3)①(1)中的结论仍成立.OE+OD=OC.理由如下:如图3,过点C作CM⊥OA,CN⊥OB,垂足分别为M,N,∴∠CMD=∠CNE=90°,又∵OC平分∠AOB,∴CM=CN,∠AOC=∠BOC=60°,在四边形ODCE中,∠AOB+∠DCE+∠CDO+∠CEO=360°,又∵∠AOB+∠DCE=60°+120°=180°,∴∠CDO+∠CEO=180°,又∵∠CEO+∠CEN=180°,∴∠CDO=∠CEN,且CM=CN,∠CMD=∠CNE,∴△CMD≌△CNE(AAS),∴CD=CE,DM=EN.∴OE+OD=OE+OM+DM=OE+OM+EN=ON+OM.∵∠AOC=60°,CM⊥AO,∴∠MCO=30°,∴,同理可得ON=OC,∴.②在图4中,(1)中的结论成立,OE﹣OD=OC,如图4,过点C作CM⊥OA,CN⊥OB,垂足分别为M,N,∴∠CMD=∠CNE=90°,又∵OC平分∠AOB,∴CM=CN,∠AOC=∠BOC=60°,∵∠COE+∠CEO+∠DCE+∠OCD=180°,∴∠OCD+∠CEO=60°,∵∠AOC=∠CDO+∠OCD=60°,∴∠CDO=∠CEN,且CM=CN,∠CMD=∠CNE,∴△CMD≌△CNE(AAS),∴CD=CE,DM=EN.∴OE﹣OD=ON+NE﹣(MD﹣OM)=ON+OM.∵∠AOC=60°,CM⊥AO,∴∠MCO=30°,∴,同理可得ON=OC,∴OE﹣OD=ON+OM=OC;在图5中,(1)中的结论成立,OD﹣OE=OC,如图5,过点C作CM⊥OA,CN⊥OB,垂足分别为M,N,∴∠CMD=∠CNE=90°,又∵OC平分∠AOB,∴CM=CN,∠AOC=∠BOC=60°,∵∠COA+∠CDO+∠DCE+∠OCE=180°,∴∠OCE+∠CDO=60°,∵∠NOC=∠CEO+∠OCE=60°,∴∠CDO=∠CEO,且CM=CN,∠CMD=∠CNE,∴△CMD≌△CNE(AAS),∴CD=CE,DM=EN.∴OD﹣OE=DM+OM﹣(EN﹣ON)=ON+OM.∵∠AOC=60°,CM⊥AO,∴∠MCO=30°,∴,同理可得ON=OC,∴OD﹣OE=ON+OM=OC;9.(2023·四川内江·九年级校考期中)如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.【答案】(1);(2)(1)中结论仍然成立,见解析;(3)(1)中结论不成立,,见解析.【分析】(1)先判断出∠OCE=60°,再利用特殊角的三角函数得出ODOC,同OEOC,即可得出结论;(2)同(1)的方法得OF+OGOC,再判断出△CFD≌△CGE,得出DF=EG,最后等量代换即可得出结论;(3)同(2)的方法即可得出结论.【详解】(1)∵OM是∠AOB的角平分线,∴∠AOC=∠BOC∠AOB=30°.∵CD⊥OA,∴∠ODC=90°,∴∠OCD=60°,∴∠OCE=∠DCE﹣∠OCD=60°.在Rt△OCD中,OD=OC•cos30°OC,同理:OEOC,∴OD+OEOC;(2)(1)中结论仍然成立,理由如下:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°.∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得:OFOC,OGOC,∴OF+OGOC.∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG.∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=OD+DF=OD+EG,OG=OE﹣EG,∴OF+OG=OD+EG+OE﹣EG=OD+OE,∴OD+OEOC;(3)(1)中结论不成立,结论为:OE﹣ODOC,理由如下:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°.∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得:OFOC,OGOC,∴OF+OGOC.∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG.∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=DF﹣OD=EG﹣OD,OG=OE﹣EG,∴OF+OG=EG﹣OD+OE﹣EG=OE﹣OD,∴OE﹣ODOC.【点睛】本题是几何变换综合题,主要考查了角平分线的定义和定理,全等三角形的判定和性质,特殊角的三角函数值,直角三角形的性质,正确作出辅助线是解答本题的关键.10.(2023春·四川达州·八年级校考阶段练习)倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.(1)【问题背景】已知:如图1,点E、F分别在正方形的边上,,连接,则之间存在怎样的数量关系呢?

(分析:我们把绕点A顺时针旋转至,点G、B、C在一条直线上.)于是易证得:和,所以.直接应用:正方形的边长为6,,则的值为.(2)【变式练习】已知:如图2,在中,,D、E是斜边上两点,且,请写出之间的数量关系,并说明理由.

(3)【拓展延伸】在(2)的条件下,当绕着点A逆时针一定角度后,点D落在线段BC上,点E落在线段BC的延长线上,如图3,此时(2)的结论是否仍然成立,并证明你的结论.【答案】(1)(2),见解析(3)成立,见解析【分析】(1)根据分析过程及图形分析即可;(2),把顺时针旋转到的位置此时与重合,连接,证,得,再证是直角三角形,然后由勾股定理即可解决问题;(3)根据第(2)问的辅助线画出图形即可证明.【详解】(1)∵四边形是正方形,∴,把绕点A顺时针旋转至,则与重合,∴∴,∴点G、B、C在一条直线上∵,∴,∴,∴,∵,∴,∴,∵,∴;∵正方形的边长为6,,∴,∴,,在中,,∴,解得,∴故答案为:;(2),理由如下:把顺时针旋转到的位置此时与重合,连接,

则,∴,∴,∵,∴,∴,∴,∴,∵,∴,∴,∴,∴是直角三角形,∴,∴.(3)依然成立,理由如下:把顺时针旋转到的位置此时与重合,连接,

则,∴,∴,∵,∴,∴,∴,∴,∵,∴,∴,∴,∴是直角三角形,∴,∴.【点睛】本题是四边形综合题目,考查了正方形的性质、旋转的性质、全等三角形的判定与性质、直角三角形的性质、勾股定理等知识;本题综合性比较强,正确作出辅助线构造全等三角形是解题的关键,属于中考常考题型.11.(2023·江苏·八年级专题练习)等边的两边、所在直线上分别有两点、,为外一点,且,,.当点、分别在直线、上移动时,探究、、之间的数量关系以及的周长与等边的周长的关系.(1)如图①,当点、在边、上,且时,、、之间的数量关系式为______;此时的值是______.(2)如图②,当点、在边、上,且时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明.(3)如图③,当点、分别在边、的延长线上时,若,试用含、的代数式表示.【答案】(1),;(2)结论仍然成立,证明见解析;(3).【分析】(1)由DM=DN,∠MDN=60°,可证得△MDN是等边三角形,又由△ABC是等边三角形,CD=BD,易证得Rt△BDM≌Rt△CDN,然后由直角三角形的性质,即可求得BM、NC、MN之间的数量关系BM+NC=MN,此时;(2)在CN的延长线上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,即可得DM=DM1,易证得∠CDN=∠MDN=60°,则可证得△MDN≌△M1DN,然后由全等三角形的性质,即可得结论仍然成立;(3)首先在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,即可得DM=DM1,然后证得∠CDN=∠MDN=60°,易证得△MDN≌△M1DN,则可得NC﹣BM=MN;然后根据的周长,表示出AB的长,然后根据的周长,应用等量代换即可求解.【详解】解:(1)如图①,BM、NC、MN之间的数量关系BM+NC=MN.此时.理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴;(2)猜想:结论仍然成立.证明:在NC的延长线上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴;(3)证明:在CN上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N.∴NC﹣BM=MN.∵等边的周长为,∴,的周长.故答案为:.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知等边三角形的性质及全等三角形的判定定理.12.(2023.山东八年级期中)综合与实践:(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为.(2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN的数量关系为.【答案】(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析【详解】解:(1)如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC

,∴∠BCM'+∠BCD=180°,∴点M'、C、N三点共线,∵∠MBN=45°,∴∠ABM+∠CBN=45°,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M'N=M'C+CN,∴MN=M'C+CN=AM+CN;(2)MN=AM+CN;理由如下:如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,∵∠A+∠C=180°,∴∠BCM'+∠BCD=180°,∴点M'、C、N三点共线,∵∠MBN=∠ABC,∴∠ABM+∠CBN=∠ABC=∠MBN,∴∠CBN+∠M'BC=∠MBN,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M'N=M'C+CN,∴MN=M'C+CN=AM+CN;(3)MN=CN-AM,理由如下:如图,在NC上截取CM'=AM,连接BM',∵在四边形ABCD中,∠ABC+∠ADC=180°,∴∠C+∠BAD=180°,∵∠BAM+∠BAD=180°,∴∠BAM=∠C,∵AB=BC,∴△ABM≌△CBM',∴AM=CM',BM=BM',∠ABM=∠CBM',∴∠MAM'=∠ABC,∵∠MBN=∠ABC,∴∠MBN=∠MAM'=∠M'BN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M'N=CN-CM',

∴MN=CN-AM.故答案是:MN=CN-AM.13.(2022·山东济南·二模)已知AD是等边△ABC的高,AC=2,点O为直线AD上的动点(不与点A重合),连接BO,将线段BO绕点O顺时针旋转60°,得到线段OE,连接CE、BE.(1)问题发现:如图1,当点O在线段AD上时,线段AO与CE的数量关系为,∠ACE的度数是.(2)问题探究:如图2,当点O在线段AD的延长线上时,(1)中结论是否还成立?请说明理由.(3)问题解决:当∠AEC=30°时,求出线段BO的长【答案】(1)AO=CE,∠ACE=90°;(2)成立,见解析;(3)BO=2或2【分析】(1)证明△ABO≌△CBE(SAS),则AO=CE,∠BAO=∠BCE,进而求解;(2)和(1)的方法相同;(3)①当点O1在线段AD的延长线上时,证明点A、B、E1在一条直线上,进而求解;②当点O2在线段DA的延长线上时,通过画图确定BO2为位置,进而求解.(1)解:AO=CE,∠ACE=90°,理由如下:∵线段BO绕点O顺时针旋转60°,得到线段OE,∴BO=OE,∠BOE=60°,∴△BOE为等边三角形,∴∠OBE=60°,BE=BO,∴∠OBE=60°=∠OBD+∠DBE,∵△ABC为等边三角形,∴∠ABC=60°=∠ABO+∠OBD,AB=AC,∴∠ABO=∠CBE,在△ABO和△CBE中,,∴△ABO≌△CBE(SAS),∴AO=CE,∠BAO=∠BCE,∵AD是等边三角形ABC的高,∴∠ACB=60°,AD也是∠BAC的平分线,∴∠BAO=30°=∠BCE,∴∠ACE=∠BCE+∠ACB=30°+60°=90°,故答案为:AO=CE,∠ACE=90°;(2)解:成立,理由如下:如图:连接BE.∵线段BO绕点O顺时针旋转了60°得EO,∴BO=EO,∠BOE=60°,∴△BOE是等边三角形,∴BO=BE,∠OBE=60°,∵△ABC是等边三角形,∴BA=BC,∠ABC=60°,∴∠ABC+∠OBC=∠OBE+∠OBC,即∠ABO=∠CBE,在△ABO和△CBE中,∴△ABO≌△CBE(SAS),∴AO=CE,∠BAO=∠BCE,∵AD是等边△ABC的高,∴∠BCE=∠BAO=30°,∠BCA=60°,∴∠ACE=∠BCE+∠ACB=30°+60°=90°,∴AO=CE,∠ACE=90°;(3)解:①当点O1在线段AD的延长线上时,由(1)和(2)知:△BO1E1是等边三角形,∠ACE1=90°,∵∠ACE1=90°,∠AE1C=30°,∴∠E1AC=60°,∵∠BAC=60°,∴点A、B、E1在一条直线上,∵在Rt△ACE1中,AC=2,∠AE1C=30°,∴AE1=4,∴BO1=BE1=2;②当点O2在线段DA的延长线上时,∵∠ACE2=90°,∠AE2C=30°,AC=2,∴AE2=4,,∵△ABO2≌△CBE2(SAS)∴,∵AD是等边△ABC的高,AB=AC=2,∴BD=1,,在Rt△O2DB中,BD=1,而,∴;综上,BO=2或.【点睛】本题考查了旋转的性质,等边三角形的判定及性质,全等三角形的判定及性质,勾股定理,分类讨论是解决本题的关键.14.(2023·重庆忠县·九年级期末)已知等腰直角与有公共顶点.(1)如图①,当点在同一直线上时,点为的中点,求的长;(2)如图②,将绕点旋转,点分别是的中点,交于,交于.①猜想与的数量关系和位置关系,并证明你猜想的结论;②参考图③,若为的中点,连接,在旋转过程中,线段的最小值是多少(直接写出结果).【答案】(1);(2)①;证明见解析;②线段的最小值是.【分析】(1)如图:过点作于点,先说明FQ是△ADE的中位线,然后再求得FQ、BQ,最后再运用勾股定理解答即可;(2)①连接交于,先证明可得,然后再说明GM是△ABD的中位线可得,然后再根据角的关系证明﹔②如图:连接CG,取中点O,连接OK、OM,再根据勾股定理和三角形中位线的性质求得CG和OK,进而求得OM,最后根据三角形的三边关系即可解答.【详解】解:(1)过点作于点,∵点是的中点,∴FQ是△ADE的中位线,;(2)①﹔证明:连接交于.,.即;在和中,,(SAS),分别是的中点,∴GM是△ABD的中位线且,,﹔②如图:连接CG,取中点O,连接OK、OM∴,OK=AG=1∵∠CMG=90°,O为CG的中点∴OM=CG=∵MK>OM-OK∴当O、K、M共线时,MK取最小值OM-OK=-1.【点睛】本题主要考查了三角形的中线、勾股定理、全等三角形的判定与性质等知识点,灵活运用相关知识点成为解答本题的关键.15.(2023·福建福州市·九年级月考)如图,和均为等边三角形,连接BE、CD.(1)请判断:线段BE与CD的大小关系是;(2)观察图,当和分别绕点A旋转时,BE、CD之间的大小关系是否会改变?(3)观察如图和4,若四边形ABCD、DEFG都是正方形,猜想类似的结论是___________,在如图中证明你的猜想.(4)这些结论可否推广到任意正多边形(不必证明),如图,BB1与EE1的关系是;它们分别在哪两个全等三角形中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论