专题09圆中的最值模型之阿氏圆模型(原卷版)_第1页
专题09圆中的最值模型之阿氏圆模型(原卷版)_第2页
专题09圆中的最值模型之阿氏圆模型(原卷版)_第3页
专题09圆中的最值模型之阿氏圆模型(原卷版)_第4页
专题09圆中的最值模型之阿氏圆模型(原卷版)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题09圆中的最值模型之阿氏圆模型最值问题在中考数学常以压轴题的形式考查,“阿氏圆”又称“阿波罗尼斯圆”,主要考查转化与化归等的数学思想。在各类考试中都以高档题为主,中考说明中曾多处涉及。本专题就最值模型中的阿氏圆问题进行梳理及对应试题分析,方便掌握。【模型背景】已知平面上两点A、B,则所有满足PA=k·PB(k≠1)的点P的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。【模型解读】如图1所示,⊙O的半径为r,点A、B都在⊙O外,P为⊙O上一动点,已知r=k·OB,连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?如图2,在线段OB上截取OC使OC=k·r,则可说明△BPO与△PCO相似,即k·PB=PC。故本题求“PA+k·PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。如图3所示:注意区分胡不归模型和阿氏圆模型:在前面的“胡不归”问题中,我们见识了“k·PA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【最值原理】两点之间线段最短及垂线段最短解题。例1.(2023·山西·九年级专题练习)如图,在中,,以点B为圆心作圆B与相切,点P为圆B上任一动点,则的最小值是___________.例2.(2022·四川成都·模拟预测)如图,已知正方ABCD的边长为6,圆B的半径为3,点P是圆B上的一个动点,则的最大值为_______.例3.(2023·广东·九年级专题练习)如图,菱形的边长为2,锐角大小为,与相切于点E,在上任取一点P,则的最小值为___________.例4.(2023·北京·九年级专题练习)如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则PA+PB的最小值为________.例5.(2023·浙江·一模)问题提出:如图1,在等边△ABC中,AB=9,⊙C半径为3,P为圆上一动点,连结AP,BP,求AP+BP的最小值(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)如图2,连结CP,在CB上取点D,使CD=1,则有又∵∠PCD=∠△∽△∴∴PD=BP∴AP+BP=AP+PD∴当A,P,D三点共线时,AP+PD取到最小值请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=4,则AP+PC的最小值为.(请在图3中添加相应的辅助线)(3)拓展延伸:如图4,在扇形COD中,O为圆心,∠COD=120°,OC=4.OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.例6.(2022·湖北·九年级专题练习)(1)如图1,已知正方形的边长为4,圆B的半径为2,点P是圆B上的一个动点,求的最小值,的最小值,的最大值.(2)如图2,已知正方形的边长为9,圆B的半径为6,点P是圆B上的一个动点,求的最小值,的最大值,的最小值.(3)如图3,已知菱形的边长为4,,圆B的半径为2,点P是圆B上的一个动点,求的最小值和的最大值.的最小值例7.(2022·广东·广州市九年级阶段练习)如图,在平面直角坐标系中,A(2,0),B(0,2),C(4,0),D(5,3),点P是第一象限内一动点,且,则4PD+2PC的最小值为_______.课后专项训练1.(2023·江苏苏州·苏州市二模)如图,在中,点A、点在上,,,点在上,且,点是的中点,点是劣弧上的动点,则的最小值为.2.(2022·四川泸州·校考一模)如图,为的直径,,点C与点D在的同侧,且,,,,点P是上的一动点,则的最小值为.3.(2023秋·浙江温州·九年级校考期末)如图,在边长为4的正方形ABCD内有一动点P,且BP=.连接CP,将线段PC绕点P逆时针旋转90°得到线段PQ.连接CQ、DQ,则DQ+CQ的最小值为.4.(2022·广东·九年级专题练习)如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是.

5.(2020·广西·中考真题)如图,在Rt中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是.6.(2023·江苏·九年级专题练习)如图,在中,,以点B为圆心作圆B与相切,点P为圆B上任一动点,则的最小值是.7.(2023·重庆·九年级专题练习)如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣PC的最大值为.8.(2023·浙江·九年级专题练习)如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF=4,点G为线段EF的中点,连接BG、CG,则BG+CG的最小值为.9.如图,扇形中,,,是的中点,是上一点,,是上一动点,则的最小值为.10.(2023·四川成都·九年级专题练习)在中,AB=9,BC=8,∠ABC=60°,⊙A的半径为6,P是上一动点,连接PB,PC,则的最小值_____________的最小值_______16.(2023·江苏扬州·校联考二模)请认真阅读下列材料:如图①,给定一个以点O为圆心,r为半径的圆,设点A是不同于点O的任意一点,则点A的反演点定义为射线上一点,满足.显然点A也是点的反演点.即点A与点互为反演点,点O为反演中心,r称为反演半径.这种从点A到点的变换或从点到点A的变换称为反演变换.例如:如图②,在平面直角坐标系中,点,以点O为圆心,为半径的圆,交y轴的正半轴于点B;C为线段的中点,P是上任意一点,点D的坐标为;若C关于的反演点分别为.(1)求点的坐标;(2)连接、,求的最小值.解:(1)由反演变换的定义知:,其中,.∴,故点的坐标为;(2)如图③,连接、,由反演变换知,即,而,∴.∴,即.∴.故的最小值为13.请根据上面的阅读材料,解决下列问题:如图④,在平面直角坐标系中,点,以点O为圆心,为半径画圆,交y轴的正半轴于点B,C为线段的中点,P是上任意一点,点D的坐标为.(1)点D关于的反演点的坐标为________;(2)连接、,求的最小值;(3)如图⑤,以为直径作,那么上所有的点(点O除外)关于的反演点组成的图形具有的特征是__________________.17.(2023·江苏·九年级专题练习)如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求:①,②,③,④的最小值.18.(2023·江苏·九年级专题练习)如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD(1)求证:△BDC≌△AFC(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.19.(2022·广东·统考二模)(1)初步研究:如图1,在△

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论