第19讲四边形的存在性(练习)_第1页
第19讲四边形的存在性(练习)_第2页
第19讲四边形的存在性(练习)_第3页
第19讲四边形的存在性(练习)_第4页
第19讲四边形的存在性(练习)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第19讲四边形的存在性(练习)1.(2019·上海八年级期末)如图,直线分别与轴、轴交于两点,与直线交于点.(1)点坐标为(,),B为(,).(2)在线段上有一点,过点作轴的平行线交直线于点,设点的横坐标为,若四边形是平行四边形时,求出此时的值.(3)若点为轴正半轴上一点,且,则在轴上是否存在一点,使得四个点能构成一个梯形若存在,求出所有符合条件的点坐标;若不存在,请说明理由.【答案】(1)点的坐标是,点的坐标是;(2);(3)符合条件的点坐标为【分析】(1)先将点C坐标代入直线l1中,求出直线l1的解析式,令x=0和y=0,即可得出结论;

(2)先求出直线l2的解析式,表示出点E,F的坐标,在判断出OB=EF,建立方程求解,即可得出结论;

(3)先求出点P的坐标,分两种情况求出直线PQ,AQ的解析式,即可得出结论.【详解】解:(1)∵点C(2,)在直线l1:上,

∴,

∴直线l1的解析式为,令x=0,∴y=3,∴B(0,3),

令y=0,∴,∴x=4,∴A(4,0),

故答案为:点的坐标是,点的坐标是.(2)∵轴,点的横坐标为,∴点的横坐标也为,∵直线与直线交于点∵点是直线的一点,∴点E的坐标是,∵点是直线上的一点,∴点的坐标是∵当(3)若点为轴正半轴上一点,,,∴,.当时直线AB的解析式为:直线PQ的解析式为∴点的坐标是当时直线BP的解析式为,直线AQ的解析式为∴点的坐标是综上,在平面直角坐标系中存在点,使得四个点能构成一个梯形,符合条件的点坐标为【点睛】此题是一次函数综合题,主要考查了待定系数法,平行四边形的性质,三角形的面积公式,利用方程的思想解决问题是解本题的关键.2.(2017·上海八年级期末)如图1,已知△OAB、△OBC、△OCD、△ODE、△OEF和△OFA均为边长为a的等边三角形,点P为边BC上任意一点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)那么∠MPN=______,并求证PM+PN=3a;(2)如图2,联结OM、ON.求证:OM=ON;(3)如图3,OG平分∠MON,判断四边形OMGN是否为特殊四边形,并说明理由.【答案】60°;【解析】(1)由∠MPN=180°﹣∠BPM﹣∠NPC即可得出∠MPN的度数;作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解;(2)由SAS证明△OMA≌△ONE,得出对应边相等即可;(3)由△OMA≌△ONE得出∠MOA=∠EON,再证出△GOE≌△NOD,得出OG=ON,由△ONG是等边三角形和△MOG是等边三角形即可得出四边形MONG是菱形.(1)解:∵△OAB、△OBC、△OCD、△ODE、△OEF和△OFA均为边长为a的等边三角形∴六边形ABCDEF是边长为a的正六边形,∴∠FAB=∠ABC=∠BCD=∠CDE=∠DEF=∠EFA=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为60°;作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,如图所示:MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HP=BP,PL=PC,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)证明:由(1)得:六边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,∵∠MAO=∠OEN=60°,OA=OE,在△OMA和△ONE中,,∴△OMA≌△ONE(SAS)∴OM=ON.(3)解:四边形MONG是菱形;理由如下:由(2)得,△OMA≌△ONE,∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GOE=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和△DON中,,∴△GOE≌△NOD(ASA),∴OG=ON,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.“点睛”本题是四边形的综合题目,考查了等边三角形的性质与判定、全等三角形的判定与性质、正六边形的性质、平行四边形的判定与性质、菱形的判定等知识;本题综合性强,难度较大,需要多次证明三角形全等和等边三角形才能得出结论.3.(2017·上海八年级期末)如图,在平面直角坐标系xOy中,直线交y轴于点A,交x轴于点B,以线段AB为边作菱形ABCD(点C、D在第一象限),且点D的纵坐标为9.(1)求点A、点B的坐标;(2)求直线DC的解析式;(3)除点C外,在平面直角坐标系xOy中是否还存在点P,使点A、B、D、P组成的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】(1)点A(0,4);点B(,0).(2)直线DC的解析式为.(3)点P的坐标为(,﹣5)或(﹣,13).【解析】(1)分别令一次函数中x=0、y=0,求出与之对应的y、x的值,由此即可得出点A、B的坐标;(2)过点D作DE⊥y轴,垂足为E,由点D的纵坐标为9即可得出AE的长,根据菱形的性质得出AB=AD,结合勾股定理即可求出点D的坐标,由DC∥AB可设直线DC的解析式为,代入点D的坐标求出b值即可得出结论;(3)假设存在,点C时以BD为对角线找出的点,再分别以AB、AD为对角线,根据平行四边形的性质(对角线互相平分)结合点A、B、D的坐标即可得出点P的坐标.解:(1)令中x=0,则y=4,∴点A(0,4);令中y=0,则﹣x+4=0,解得:x=2,∴点B(2,0).(2)过点D作DE⊥y轴,垂足为E,如图1所示.∵点D的纵坐标为9,OA=4,∴AE=5.∵四边形是ABCD是菱形,∴AD=AB=,∴DE==,∴D(,9).∵四边形是ABCD是菱形,∴DC∥AB,∴设直线DC的解析式为,∵直线DC过点D(,9),∴b=11,∴直线DC的解析式为.(3)假设存在.以点A、B、D、P组成的四边形是平行四边形还有两种情况(如图2):①以AB为对角线时,∵A(0,4),B(2,0),D(,9),∴点P(0+2﹣,4+0﹣9),即(,﹣5);②以AD为对角线时,∵A(0,4),B(2,0),D(,9),∴点P(0+﹣2,4+9﹣0),即(﹣,13).故除点C外,在平面直角坐标系xOy中还存在点P,使点A、B、D、P组成的四边形是平行四边形,点P的坐标为(,﹣5)或(﹣,13).“点睛”本题考查了一次函数图象上点的坐标特征、菱形的性质、勾股定理以及待定系数法求函数解析,解题的关键是:(1)分别代入x=0,y=0,求出与之对应的y、x的值;(2)求出点D的坐标;(3)分别以AB、AD为对角线求出点P的坐标.本题属于中档题,难度不大,解决该题型题目时,根据平行四边形的性质(对角线互相平分),结合三个顶点的坐标求出另一顶点坐标是关键.4.(2020·上海八年级期末)在平面直角坐标系xOy中,若P,Q为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.图1为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,2).(1)如图2,点B的坐标为(b,0).①若b=﹣2,则点A,B的“相关矩形”的面积是;②若点A,B的“相关矩形”的面积是8,则b的值为.(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.【答案】(1)①6;②5或﹣3;(2)直线AC的表达式为:y=﹣x+3或y=x+1;(3)m的取值范围为﹣3≤m≤﹣2+或2﹣≤m≤3.【分析】(1)①由矩形的性质即可得出结果;②由矩形的性质即可得出结果;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3求出正方形AGCH的边长为3,分两种情况求出直线AC的表达式即可;(3)由题意得出点M在直线y=2上,由等边三角形的性质和题意得出OD=OE=DE=1,EF=DF=DE=2,得出OF=OD=,分两种情况:①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2+,2);得出m的取值范围为﹣3≤m≤﹣2+或2﹣≤m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(2﹣,2);得出m的取值范围为2﹣≤m≤3或2﹣≤m≤1;即可得出结论.【详解】解:(1)①∵b=﹣2,∴点B的坐标为(﹣2,0),如图2﹣1所示:∵点A的坐标为(1,2),∴由矩形的性质可得:点A,B的“相关矩形”的面积=(1+2)×2=6,故答案为:6;②如图2﹣2所示:由矩形的性质可得:点A,B的“相关矩形”的面积=|b﹣1|×2=8,∴|b﹣1|=4,∴b=5或b=﹣3,故答案为:5或﹣3;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,当点C在直线x=1右侧时,如图3﹣1所示:CG=3,则C(4,﹣1),设直线AC的表达式为:y=kx+a,则,解得;,∴直线AC的表达式为:y=﹣x+3;当点C在直线x=1左侧时,如图3﹣2所示:CG=3,则C(﹣2,﹣1),设直线AC的表达式为:y=k′x+b,则,解得:,∴直线AC的表达式为:y=x+1,综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;(3)∵点M的坐标为(m,2),∴点M在直线y=2上,∵△DEF是等边三角形,顶点F在y轴的正半轴上,点D的坐标为(1,0),∴OD=OE=DE=1,EF=DF=DE=2,∴OF=OD=,分两种情况:如图4所示:①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2+,2)或(2﹣,2);∴m的取值范围为﹣3≤m≤﹣2+或2﹣≤m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(2﹣,2)或(﹣2+,2);∴m的取值范围为2﹣≤m≤3或﹣1≤m≤﹣2+;综上所述,m的取值范围为﹣3≤m≤﹣2+或2﹣≤m≤3.【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.5.如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像相交于A、B两点,点A的坐标为(2,3),点B的横坐标为6.(1)求反比例函数与一次函数的解析式;(2)如果点C、D分别在x轴、y轴上,四边形ABCD是平行四边形,求直线CD的表达式.【难度】★★【解析】(1)(2)【总结】本题考查了一次函数在直角坐标系中的综合应用及平行四边形的判定和性质.6.已知一条直线y=kx+b在y轴上的截距为2,它与x轴、y轴的交点分别为A、B,且△ABO的面积为4.(1)求点A的坐标;(2)若k<0,在直角坐标平面内有一点D,使四边形ABOD是一个梯形,且AD∥BO,其面积又等于20,试求点D的坐标.【难度】★★【解析】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论