2025届重庆市北碚区数学高二上期末质量跟踪监视模拟试题含解析_第1页
2025届重庆市北碚区数学高二上期末质量跟踪监视模拟试题含解析_第2页
2025届重庆市北碚区数学高二上期末质量跟踪监视模拟试题含解析_第3页
2025届重庆市北碚区数学高二上期末质量跟踪监视模拟试题含解析_第4页
2025届重庆市北碚区数学高二上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆市北碚区数学高二上期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数到与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.如数列1,3,6,10,前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列、这样的数列称为二阶等差数列.现有二阶等差数列,其前7项分别为2,3,5,8,12,17,23则该数列的第100项为()A.4862 B.4962C.4852 D.49522.椭圆()的右顶点是抛物线的焦点,且短轴长为2,则该椭圆方程为()A. B.C. D.3.椭圆的左右焦点分别为,是上一点,轴,,则椭圆的离心率等于()A. B.C. D.4.数学家欧拉1765年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知△ABC的顶点分别为,,,则△ABC的欧拉线方程为()A. B.C. D.5.在等差数列中,若,则()A.5 B.6C.7 D.86.函数图象如图所示,则的解析式可以为A. B.C. D.7.如图,奥运五环由5个奥林匹克环套接组成,环从左到右互相套接,上面是蓝、黑、红环,下面是黄,绿环,整个造形为一个底部小的规则梯形.为迎接北京冬奥会召开,某机构定制一批奥运五环旗,已知该五环旗的5个奥林匹克环的内圈半径为1,外圈半径为1.2,相邻圆环圆心水平距离为2.6,两排圆环圆心垂直距离为1.1,则相邻两个相交的圆的圆心之间的距离为()A. B.2.8C. D.2.98.《米老鼠和唐老鸭》这部动画给我们的童年带来了许多美好的回忆,令我们印象深刻.如图所示,有人用3个圆构成米奇的简笔画形象.已知3个圆方程分别为:圆圆,圆若过原点的直线与圆、均相切,则截圆所得的弦长为()A. B.C. D.9.设函数,若为奇函数,则曲线在点处的切线方程为()A. B.C. D.10.已知数列是等差数列,其前n项和为,则下列说法错误的是()A.数列一定是等比数列 B.数列一定是等差数列C.数列一定是等差数列 D.数列可能是常数数列11.如图,在棱长为1的正方体中,M是的中点,则点到平面MBD的距离是()A. B.C. D.12.等差数列的首项为正数,其前n项和为.现有下列命题,其中是假命题的有()A.若有最大值,则数列的公差小于0B.若,则使的最大的n为18C.若,,则中最大D.若,,则数列中的最小项是第9项二、填空题:本题共4小题,每小题5分,共20分。13.根据如下样本数据34567402.5-0.50.5-2得到的回归方程为若,则的值为___________.14.已知直线和互相平行,则实数的值为___________.15.圆关于直线的对称圆的标准方程为_______16.中国的西气东输工程把西部地区的资源优势变为经济优势,实现了天然气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展.输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为的峡谷拐入宽为的峡谷,如图所示,位于峡谷悬崖壁上两点,的连线恰好经过拐角内侧顶点(点,,在同一水平面内),设与较宽侧峡谷悬崖壁所成的角为,则的长为______(用表示).要使输气管顺利通过拐角,其长度不能低于______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线C:的离心率为,过点作垂直于x轴的直线截双曲线C所得弦长为(1)求双曲线C的方程;(2)直线()与该双曲线C交于不同的两点A,B,且A,B两点都在以点为圆心的同一圆上,求m的取值范围18.(12分)如图,在几何体中,底面是边长为2的正三角形,平面,,且是的中点.(1)求证:平面;(2)求二面角的余弦值.19.(12分)已知直线l:2mx-y-8m-3=0和圆C:x2+y2-6x+12y+20=0.(1)m∈R时,证明l与C总相交;(2)m取何值时,l被C截得的弦长最短?求此弦长20.(12分)设抛物线的焦点为,点在抛物线上,且,椭圆右焦点也为,离心率为(1)求抛物线方程和椭圆方程;(2)若不经过的直线与抛物线交于、两点,且(为坐标原点),直线与椭圆交于、两点,求面积的最大值21.(12分)某工厂修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米(1)求底面积,并用含x的表达式表示池壁面积;(2)怎样设计水池能使总造价最低?最低造价是多少?22.(10分)已知数列满足,(1)证明是等比数列,(2)求数列的前项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意可得数列2,3,5,8,12,17,23,,满足:,,从而利用累加法即可求出,进一步即可得到的值【详解】2,3,5,8,12,17,23,后项减前项可得1,2,3,4,5,6,所以,所以.所以.故选:D2、A【解析】求得抛物线的焦点从而求得,再结合题意求得,即可写出椭圆方程.【详解】因为抛物线的焦点坐标为,故可得;又短轴长为2,故可得,即;故椭圆方程为:.故选:.3、A【解析】在中结合已知条件,用焦距2c表示、,再利用椭圆定义计算作答.【详解】令椭圆的半焦距为c,因是上一点,轴,,在中,,,由椭圆定义知,则,所以椭圆的离心率等于.故选:A4、A【解析】求出重心坐标,求出AB边上高和AC边上高所在直线方程,联立两直线可得垂心坐标,即可求出欧拉线方程.【详解】由题可知,△ABC的重心为,可得直线AB的斜率为,则AB边上高所在的直线斜率为,则方程为,直线AC的斜率为,则AC边上高所在的直线斜率为2,则方程为,联立方程可得△ABC的垂心为,则直线GH斜率为,则可得直线GH方程为,故△ABC的欧拉线方程为.故选:A.5、B【解析】由得出.【详解】由可得,故选:B6、A【解析】利用排除法:对于B,令得,,即有两个零点,不符合题意;对于C,当时,,当且仅当时等号成立,即函数在区间上存在最大值,不符合题意;对于D,的定义域为,不符合题意;本题选择A选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项7、C【解析】根据题意作出辅助线直接求解即可.【详解】如图所示,由题意可知,在中,取的中点,连接,所以,,又因为,所以,所以即相邻两个相交的圆的圆心之间的距离为.故选:C8、A【解析】设直线,利用直线与圆相切,求得斜率,再利用弦长公式求弦长【详解】设过点的直线.由直线与圆、圆均相切,得解得(1).设点到直线的距离为则(2).又圆的半径直线截圆所得弦长结合(1)(2)两式,解得9、C【解析】利用函数的奇偶性求出,求出函数的导数,根据导数的几何意义,利用点斜式即可求出结果【详解】函数的定义域为,若为奇函数,则则,即,所以,所以函数,可得;所以曲线在点处的切线的斜率为,则曲线在点处的切线方程为,即故选:C10、B【解析】可根据已知条件,设出公差为,选项A,可借助等比数列的定义使用数列是等差数列,来进行判定;选项B,数列,可以取,即可判断;选项C,可设,表示出再进行判断;选项D,可采用换元,令,求得的关系即可判断.【详解】数列是等差数列,设公差为,选项A,数列是等差数列,那么为常数,又,则数列一定是等比数列,所以选项A正确;选项B,当时,数列不存在,故该选项错误;选项C,数列是等差数列,可设(A、B为常数),此时,,则为常数,故数列一定是等差数列,所以该选项正确;选项D,,则,当时,,此时数列可能是常数数列,故该选项正确.故选:B.11、A【解析】等体积法求解点到平面的距离.【详解】连接,,则,,由勾股定理得:,,取BD中点E,连接ME,由三线合一得:ME⊥BD,则,故,设到平面MBD的距离是,则,解得:,故点到平面MBD的距离是.故选:A12、B【解析】由有最大值可判断A;由,可得,,利用可判断BC;,得,,可判断D.【详解】对于选项A,∵有最大值,∴等差数列一定有负数项,∴等差数列为递减数列,故公差小于0,故选项A正确;对于选项B,∵,且,∴,,∴,,则使的最大的n为17,故选项B错误;对于选项C,∵,,∴,,故中最大,故选项C正确;对于选项D,∵,,∴,,故数列中的最小项是第9项,故选项D正确.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、-1.4##【解析】分别求出的值,即得到样本中心点,根据样本中心点一定在回归直线上,可求得答案.【详解】,则得到样本中心点为,因为样本中心点一定在回归直线上,故,解得,故答案为:14、【解析】根据直线平行的充要条件即可求出实数的值.详解】由直线和互相平行,得,即.故答案为:.15、【解析】先将已知圆的方程化为标准形式,求得圆心坐标(2,2)和半径2,然后可根据直线的位置直接看出(2,2)点的对称点,进而写出方程.【详解】圆的标准方程为,圆心(2,2),半径为2,圆心(2,2)关于直线的对称点为原点,所以所求对称圆标准方程为,故答案为:16、①.②.【解析】(1)利用三角关系分别利用表示、即可求解;(2)利用导数求最小值的方法即可求解.【详解】过点分别作,,垂足分别为,,则,在中,,则,同理可得,所以.令,则,令,,得,即,由,解得,当时,;当时,,所以当时,取得极小值,也是最小值,则,故输气管的长度不能低于m.故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)利用双曲线离心率、点在双曲线上及得到关于、、的方程组,进而求出双曲线的标准方程;(2)联立直线和双曲线的方程,得到关于的一元二次方程,利用直线和双曲线的位置关系、根与系数的关系得到两个交点坐标间的关系,利用A,B两点都在以点为圆心的同一圆上得到,再利用向量的数量积为0得到、的关系,进而消去得到的不等式进行求解.【小问1详解】解:因为过点作垂直于x轴的直线截双曲线C所得弦长为,所以点在双曲线上,由题意,得,解得,,,即双曲线的标准方程为.【小问2详解】解:联立,得,因为直线与该双曲线C交于不同的两点,所以且,即且,设,,的中点,则,,因为A,B两点都在以点为圆心的同一圆上,所以,即,因为,,所以,即,将代入,得,解得或,即m的取值范围为或.18、(1)证明见解析(2)【解析】(1)取的中点F,连接EF,,由四边形是平行四边形即可求解;(2)采用建系法,以为轴,为轴,垂直底面方向为轴,求出对应点坐标,结合二面角夹角余弦公式即可求解.【小问1详解】取的中点F,连接EF,,∵,∴,且,∴,∴四边形是平行四边形,∴,又平面,平面,∴平面;【小问2详解】取AC的中点O,以O为坐标原点,建立如图所示的空间直角坐标系,则,,,∴,.设平面的法向量是,则,即,令,得,易知平面的一个法向量是,∴,又二面角是钝二面角,∴二面角的余弦值为.19、(1)证明见解析;(2)当时,l被C截得的弦长最短,最短弦长为.【解析】(1)求出直线l的定点,进而判断定点和圆C的位置关系,最后得到答案;(2)当圆心C到直线l的距离最大时,弦长最短,进而求出m,然后根据勾股定理求出弦长.【详解】(1)直线l的方程可化为y+3=2m(x-4),则l过定点P(4,-3),由于42+(-3)2-6×4+12×(-3)+20=-15<0,所以点P在圆内,故直线l与圆C总相交(2)圆的C方程可化为:(x-3)2+(y+6)2=25,如图所示,当圆心C(3,-6)到直线l的距离最大时,弦AB的长度最短,此时PC⊥l,又,所以直线l的斜率为,则,在直角中,|PC|=,|AC|=5,所以|AB|=.故当时,l被C截得的弦长最短,最短弦长为.20、(1)抛物线方程为,椭圆方程为(2)【解析】(1)由,可得,继而可得,故,再利用离心率,以及,即得解;(2)设直线方程为,与抛物线联立,,结合韦达定理可得,再与椭圆联立,,韦达定理代入,结合均值不等式即得解【小问1详解】由题意,解得:,故,,,,,所以抛物线方程为,椭圆方程为【小问2详解】设直线方程为,由消去得,,设,,则因,所以或(舍去),所以直线方程为由,消去得,设,,则设直线与轴交点为,则所以令,则,所以,当且仅当时,即时,取最大值21、(1)1600,(平方米);(2)池底设计为边长40米的正方形时总造价最低,最低造价为268800元.【解析】(1)根据题意,由于修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米可得底面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论