




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页2020高考真题汇编8:数列一、选择题1.【2020年高考全国Ⅰ卷文数】设是等比数列,且,,则()A.12B.24C.30D.322.【2020年高考全国Ⅱ卷文数】记Sn为等比数列{an}的前n项和.若a5–a3=12,a6–a4=24,则=()A.2n–1B.2–21–nC.2–2n–1D.21–n–13.【2020年高考北京】在等差数列中,,.记,则数列()A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项4.【2020年高考浙江】已知等差数列{an}的前n项和为Sn,公差,且.记,,,下列等式不可能成立的是()A.B.C.D.二、填空题5.【2020年高考全国Ⅰ卷文数】数列满足,前16项和为540,则.6.【2020年高考全国Ⅱ卷文数】记Sn为等差数列{an}的前n项和.若a1=−2,a2+a6=2,则S10=__________.7.【2020年高考浙江】我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列就是二阶等差数列.数列的前3项和是_______.8.【2020年高考江苏】设{an}是公差为d的等差数列,{bn}是公比为q的等比数列.已知数列{an+bn}的前n项和,则d+q的值是________.9.【2020年新高考全国Ⅰ卷】将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________.三、解答题10.【2020年新高考全国Ⅰ卷】已知公比大于的等比数列满足.(1)求的通项公式;(2)记为在区间中的项的个数,求数列的前项和.11.【2020年高考全国Ⅲ卷文数】设等比数列{an}满足,.(1)求{an}的通项公式;(2)记为数列{log3an}的前n项和.若,求m.12.【2020年高考浙江】已知数列{an},{bn},{cn}满足.(Ⅰ)若{bn}为等比数列,公比,且,求q的值及数列{an}的通项公式;(Ⅱ)若{bn}为等差数列,公差,证明:.13.【2020年高考天津】已知为等差数列,为等比数列,.(Ⅰ)求和的通项公式;(Ⅱ)记的前项和为,求证:;(Ⅲ)对任意的正整数,设求数列的前项和.14.【2020年高考北京】已知是无穷数列.给出两个性质:①对于中任意两项,在中都存在一项,使;②对于中任意项,在中都存在两项.使得.(Ⅰ)若,判断数列是否满足性质①,说明理由;(Ⅱ)若,判断数列是否同时满足性质①和性质②,说明理由;(Ⅲ)若是递增数列,且同时满足性质①和性质②,证明:为等比数列.15.【2020年高考江苏】已知数列的首项a1=1,前n项和为Sn.设λ与k是常数,若对一切正整数n,均有成立,则称此数列为“λ~k”数列.(1)若等差数列是“λ~1”数列,求λ的值;(2)若数列是“”数列,且,求数列的通项公式;(3)对于给定的λ,是否存在三个不同的数列为“λ~3”数列,且?若存在,求λ的取值范围;若不存在,说明理由.
参考答案1.答案:D解析:设等比数列的公比为,则,,因此,.故选:D.2.答案:B解析:设等比数列的公比为,由可得:,所以,因此.故选:B.3.答案:B解析:由题意可知,等差数列的公差,则其通项公式为:,注意到,且由可知,由可知数列不存在最小项,由于,故数列中的正项只有有限项:,.故数列中存在最大项,且最大项为.故选:B.4.答案:D解析:对于A,因为数列为等差数列,所以根据等差数列的下标和性质,由可得,,A正确;对于B,由题意可知,,,∴,,,.∴,.根据等差数列的下标和性质,由可得,B正确;对于C,,当时,,C正确;对于D,,,.当时,,∴即;当时,,∴即,所以,D不正确.故选:D.5.答案:解析:,当为奇数时,;当为偶数时,.设数列的前项和为,,.故答案为:.6.答案:解析:是等差数列,且,设等差数列的公差根据等差数列通项公式:可得即:整理可得:解得:根据等差数列前项和公式:可得:.故答案为:.7.答案:解析:因为,所以.即.故答案为:.8.答案:解析:设等差数列的公差为,等比数列的公比为,根据题意.等差数列的前项和公式为,等比数列的前项和公式为,依题意,即,通过对比系数可知,故.故答案为:.9.答案:解析:因为数列是以1为首项,以2为公差的等差数列,数列是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列是以1为首项,以6为公差的等差数列,所以的前项和为,故答案为:.10.解析:(1)设的公比为.由题设得,.解得(舍去),.由题设得.所以的通项公式为.(2)由题设及(1)知,且当时,.所以.11.解析:(1)设的公比为,则.由已知得,解得.所以的通项公式为.(2)由(1)知故由得,即.解得(舍去),.12.解析:(Ⅰ)由得,解得.由得.由得.(Ⅱ)由得,所以,由,得,因此.13.解析:(Ⅰ)设等差数列的公差为,等比数列的公比为.由,,可得,从而的通项公式为.由,又,可得,解得,从而的通项公式为.(Ⅱ)证明:由(Ⅰ)可得,故,,从而,所以.(Ⅲ)解:当为奇数时,;当为偶数时,.对任意的正整数,有,和.①由①得.②由①②得,从而得.因此,.所以,数列的前项和为.14.解析:(Ⅰ)不具有性质①;(Ⅱ)具有性质①;具有性质②;(Ⅲ)【解法一】首先,证明数列中的项数同号,不妨设恒为正数:显然,假设数列中存在负项,设,第一种情况:若,即,由①可知:存在,满足,存在,满足,由可知,从而,与数列的单调性矛盾,假设不成立.第二种情况:若,由①知存在实数,满足,由的定义可知:,另一方面,,由数列单调性可知:,这与的定义矛盾,假设不成立.同理可证得数列中的项数恒为负数.综上可得,数列中的项数同号.其次,证明:利用性质②:取,此时,由数列的单调性可知,而,故,此时必有,即,最后,用数学归纳法证明数列为等比数列:假设数列的前项成等比数列,不妨设,其中,(情况类似)由①可得:存在整数,满足,且(*)由②得:存在,满足:,由数列的单调性可知:,由可得:(**)由(**)和(*)式可得:,结合数列的单调性有:,注意到均为整数,故,代入(**)式,从而.总上可得,数列的通项公式为:.即数列为等比数列.【解法二】假设数列中的项数均为正数:首先利用性质②:取,此时,由数列的单调性可知,而,故,此时必有,即,即成等比数列,不妨设,然后利用性质①:取,则,即数列中必然存在一项的值为,下面我们来证明,否则,由数列的单调性可知,在性质②中,取,则,从而,与前面类似的可知则存在,满足,若,则:,与假设矛盾;若,则:,与假设矛盾;若,则:,与数列的单调性矛盾;即不存在满足题意的正整数,可见不成立,从而,同理可得:,从而数列为等比数列,同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数.从而题中的结论得证,数列为等比数列.15.解析:(1)因为等差数列是“λ~1”数列,则,即,也即,此式对一切正整数n均成立.若,则恒成立,故,而,这与是等差数列矛盾.所以.(此时,任意首项为1的等差数列都是“1~1”数列)(2)因为数列是“”数列,所以,即.因为,所以,则.令,则,即.解得,即,也即,所以数列是公比为4的等比数列.因为,所以.则(3)设各项非负的数列为“”数列,则,即.因为,而,所以,则.令,则,即.(*)①若或,则(*)只有一解为,即符合条件的数列只有一个.(此数列为1,0,0,0,…)②若,则(*)化为,因为,所以,则(*)只有一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 饲料市场销售协议书
- 运输装卸委托协议书
- 下水道承包合同协议书
- 公司安全责任人协议书
- 遗书财产分配协议书
- 食品货物转让协议书
- 公共管理案例写作
- 钢筋承包分包协议书
- 亲人间赠予房子协议书
- 茶楼股权分配协议书
- 山东省青岛市、淄博市2025年高三年级第二次适应性检测英语试题及答案(青岛、淄博二模)
- 广东省佛山市高三二模语文试题(原卷版)
- 2024年新疆额敏县事业单位公开招聘村务工作者笔试题带答案
- 7.1 观察物体(课件)-2024-2025学年苏教版数学一年级下册
- 早产儿试题及答案多选
- 2025年公共安全管理考试题及答案
- 林下经济产业项目可行性研究报告
- 2025年宁夏吴忠红寺堡区公开招聘社区工作者46人笔试备考题库及答案解析
- 《深入了解中信建投》课件
- 抢救配合流程和站位规范
- 2025年全民营养周科学实现吃动平衡健康中国营养先行课件
评论
0/150
提交评论