




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省深圳市耀华实验学校高三年级下学期第一次统练数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的图象如图所示,则下列说法错误的是()A.函数在上单调递减B.函数在上单调递增C.函数的对称中心是D.函数的对称轴是2.设,是空间两条不同的直线,,是空间两个不同的平面,给出下列四个命题:①若,,,则;②若,,,则;③若,,,则;④若,,,,则.其中正确的是()A.①② B.②③ C.②④ D.③④3.我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k的值为() A.45 B.60 C.75 D.1004.已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为()A. B. C. D.5.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积()A. B. C. D.6.函数在的图象大致为()A. B.C. D.7.若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为()A. B.2 C. D.8.若双曲线的一条渐近线与直线垂直,则该双曲线的离心率为()A.2 B. C. D.9.执行如下的程序框图,则输出的是()A. B.C. D.10.已知双曲线的右焦点为为坐标原点,以为直径的圆与双曲线的一条渐近线交于点及点,则双曲线的方程为()A. B. C. D.11.如图所示的茎叶图为高三某班名学生的化学考试成绩,算法框图中输入的,,,,为茎叶图中的学生成绩,则输出的,分别是()A., B.,C., D.,12.在的展开式中,含的项的系数是()A.74 B.121 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设向量,,且,则_________.14.过动点作圆:的切线,其中为切点,若(为坐标原点),则的最小值是__________.15.已知双曲线的左焦点为,、为双曲线上关于原点对称的两点,的中点为,的中点为,的中点为,若,且直线的斜率为,则__________,双曲线的离心率为__________.16.双曲线的左右顶点为,以为直径作圆,为双曲线右支上不同于顶点的任一点,连接交圆于点,设直线的斜率分别为,若,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.18.(12分)已知函数.(Ⅰ)求函数的极值;(Ⅱ)若,且,求证:.19.(12分)已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线?(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.20.(12分)已知函数,.(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)求函数在上的最小值;(Ⅲ)若函数,当时,的最大值为,求证:.21.(12分)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当直线的倾斜角为时,求线段AB的中点的横坐标;(2)设点A关于轴的对称点为C,求证:M,B,C三点共线;(3)设过点M的直线交椭圆于两点,若椭圆上存在点P,使得(其中O为坐标原点),求实数的取值范围.22.(10分)已知凸边形的面积为1,边长,,其内部一点到边的距离分别为.求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据图象求得函数的解析式,结合余弦函数的单调性与对称性逐项判断即可.【详解】由图象可得,函数的周期,所以.将点代入中,得,解得,由,可得,所以.令,得,故函数在上单调递减,当时,函数在上单调递减,故A正确;令,得,故函数在上单调递增.当时,函数在上单调递增,故B错误;令,得,故函数的对称中心是,故C正确;令,得,故函数的对称轴是,故D正确.故选:B.【点睛】本题考查由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题.2、C【解析】
根据线面平行或垂直的有关定理逐一判断即可.【详解】解:①:、也可能相交或异面,故①错②:因为,,所以或,因为,所以,故②对③:或,故③错④:如图因为,,在内过点作直线的垂线,则直线,又因为,设经过和相交的平面与交于直线,则又,所以因为,,所以,所以,故④对.故选:C【点睛】考查线面平行或垂直的判断,基础题.3、B【解析】
根据程序框图中程序的功能,可以列方程计算.【详解】由题意,.故选:B.【点睛】本题考查程序框图,读懂程序的功能是解题关键.4、D【解析】
先求出椭圆方程,再利用椭圆的定义得到,利用二次函数的性质可求,从而可得的取值范围.【详解】由题设有,故,故椭圆,因为点为上的任意一点,故.又,因为,故,所以.故选:D.【点睛】本题考查椭圆的几何性质,一般地,如果椭圆的左、右焦点分别是,点为上的任意一点,则有,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题.5、C【解析】
画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.【详解】解:几何体的直观图如图,是正方体的一部分,P−ABC,正方体的棱长为2,
该几何体的表面积:.故选C.【点睛】本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键.6、C【解析】
先根据函数奇偶性排除B,再根据函数极值排除A;结合特殊值即可排除D,即可得解.【详解】函数,则,所以为奇函数,排除B选项;当时,,所以排除A选项;当时,,排除D选项;综上可知,C为正确选项,故选:C.【点睛】本题考查根据函数解析式判断函数图像,注意奇偶性、单调性、极值与特殊值的使用,属于基础题.7、D【解析】
利用复数代数形式的乘除运算化简,再由实部为求得值.【详解】解:在复平面内所对应的点在虚轴上,,即.故选D.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.8、B【解析】
由题中垂直关系,可得渐近线的方程,结合,构造齐次关系即得解【详解】双曲线的一条渐近线与直线垂直.∴双曲线的渐近线方程为.,得.则离心率.故选:B【点睛】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.9、A【解析】
列出每一步算法循环,可得出输出结果的值.【详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.10、C【解析】
根据双曲线方程求出渐近线方程:,再将点代入可得,连接,根据圆的性质可得,从而可求出,再由即可求解.【详解】由双曲线,则渐近线方程:,,连接,则,解得,所以,解得.故双曲线方程为.故选:C【点睛】本题考查了双曲线的几何性质,需掌握双曲线的渐近线求法,属于中档题.11、B【解析】
试题分析:由程序框图可知,框图统计的是成绩不小于80和成绩不小于60且小于80的人数,由茎叶图可知,成绩不小于80的有12个,成绩不小于60且小于80的有26个,故,.考点:程序框图、茎叶图.12、D【解析】
根据,利用通项公式得到含的项为:,进而得到其系数,【详解】因为在,所以含的项为:,所以含的项的系数是的系数是,,故选:D【点睛】本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题,二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据向量的数量积的计算,以及向量的平方,简单计算,可得结果.【详解】由题可知:且由所以故答案为:【点睛】本题考查向量的坐标计算,主要考查计算,属基础题.14、【解析】解答:由圆的方程可得圆心C的坐标为(2,2),半径等于1.由M(a,b),则|MN|2=(a−2)2+(b−2)2−12=a2+b2−4a−4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2−4a−4b+7=a2+b2.整理得:4a+4b−7=0.∴a,b满足的关系为:4a+4b−7=0.求|MN|的最小值,就是求|MO|的最小值.在直线4a+4b−7=0上取一点到原点距离最小,由“垂线段最短”得,直线OM垂直直线4a+4b−7=0,由点到直线的距离公式得:MN的最小值为:.15、【解析】
设,,根据中点坐标公式可得坐标,利用可得到点坐标所满足的方程,结合直线斜率可求得,进而求得;将点坐标代入双曲线方程,结合焦点坐标可求得,进而得到离心率.【详解】左焦点为,双曲线的半焦距.设,,,,,,即,,即,又直线斜率为,即,,,,在双曲线上,,即,结合可解得:,,离心率.故答案为:;.【点睛】本题考查直线与双曲线的综合应用问题,涉及到直线截双曲线所得线段长度的求解、双曲线离心率的求解问题;关键是能够通过设点的方式,结合直线斜率、垂直关系、点在双曲线上来构造方程组求得所需变量的值.16、【解析】
根据双曲线上的点的坐标关系得,交圆于点,所以,建立等式,两式作商即可得解.【详解】设,交圆于点,所以易知:即.故答案为:【点睛】此题考查根据双曲线上的点的坐标关系求解斜率关系,涉及双曲线中的部分定值结论,若能熟记常见二级结论,此题可以简化计算.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)最小值为,此时【解析】
(1)消去曲线参数方程的参数,求得曲线的普通方程.利用极坐标和直角坐标相互转化公式,求得曲线的直角坐标方程.(2)设出的坐标,结合点到直线的距离公式以及三角函数最值的求法,求得的最小值及此时点的坐标.【详解】(1)消去得,曲线的普通方程是:;把,代入得,曲线的直角坐标方程是(2)设,的最小值就是点到直线的最小距离.设在时,,是最小值,此时,所以,所求最小值为,此时【点睛】本小题主要考查参数方程化为普通方程,考查极坐标方程转化为直角坐标方程,考查利用圆锥曲线的参数求最值,属于中档题.18、(Ⅰ)极大值为:,无极小值;(Ⅱ)见解析.【解析】
(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可求出函数的极值;(Ⅱ)得到,根据函数的单调性问题转化为证明,即证,令,根据函数的单调性证明即可.【详解】(Ⅰ)的定义域为且令,得;令,得在上单调递增,在上单调递减函数的极大值为,无极小值(Ⅱ),,即由(Ⅰ)知在上单调递增,在上单调递减且,则要证,即证,即证,即证即证由于,即,即证令则恒成立在递增在恒成立【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,考查运算求解能力及化归与转化思想,关键是能够构造出合适的函数,将问题转化为函数最值的求解问题,属于难题.19、(1),抛物线;(2)存在,.【解析】
(1)设,易得,化简即得;(2)利用导数几何意义可得,要使,只需.联立直线m与抛物线方程,利用根与系数的关系即可解决.【详解】(1)设,由题意,得,化简得,所以动圆圆心Q的轨迹方程为,它是以F为焦点,以直线l为准线的抛物线.(2)不妨设.因为,所以,从而直线PA的斜率为,解得,即,又,所以轴.要使,只需.设直线m的方程为,代入并整理,得.首先,,解得或.其次,设,,则,..故存在直线m,使得,此时直线m的斜率的取值范围为.【点睛】本题考查直线与抛物线位置关系的应用,涉及抛物线中的存在性问题,考查学生的计算能力,是一道中档题.20、(Ⅰ)(Ⅱ)见解析;(Ⅲ)见解析.【解析】试题分析:(Ⅰ)由题,所以故,,代入点斜式可得曲线在处的切线方程;(Ⅱ)由题(1)当时,在上单调递增.则函数在上的最小值是(2)当时,令,即,令,即(i)当,即时,在上单调递增,所以在上的最小值是(ii)当,即时,由的单调性可得在上的最小值是(iii)当,即时,在上单调递减,在上的最小值是(Ⅲ)当时,令,则是单调递减函数.因为,,所以在上存在,使得,即讨论可得在上单调递增,在上单调递减.所以当时,取得最大值是因为,所以由此可证试题解析:(Ⅰ)因为函数,且,所以,所以所以,所以曲线在处的切线方程是,即(Ⅱ)因为函数,所以(1)当时,,所以在上单调递增.所以函数在上的最小值是(2)当时,令,即,所以令,即,所以(i)当,即时,在上单调递增,所以在上的最小值是(ii)当,即时,在上单调递减,在上单调递增,所以在上的最小值是(iii)当,即时,在上单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 稳定农村经济项目的咨询合同
- 糕点烘焙的店铺特色服务打造考核试卷
- 木制容器设计软件应用考核试卷
- 汽车刹车系统液压测试考核试卷
- 竞品分析报告技术创新与专利布局考核试卷
- 畜牧业的养殖场与畜禽场的技术创新与产业升级考核试卷
- 玉石开采与环境保护的协调发展考核试卷
- 空调器热舒适性仿真分析考核试卷
- 高端设计工作室介绍
- 肉制品加工业的供应链设计与运营优化考核试卷
- 湖北省武汉市2025届高三下学期四月调研考试(二模)数学试题 含解析
- 广东省2025年普通高等学校招生全国统一考试模拟测试(英语试题及答案)(广东二模)
- 河南省许昌地区2024-2025学年七年级下学期期中素质评估道德与法治试卷(含答案)
- 家庭开销计划协议书模板
- 武汉一调数学试卷及答案
- 2025年北师大版七年级数学下册计算题专项训练专题04整式的混合运算与化简求值(原卷版+解析)
- 银行保密知识培训课件
- 2025年人教版七年级下册英语全册教学设计
- 脑卒中多学科会诊制度
- 2024年大模型+RAG最佳实践报告
- 旅游业数字化转型服务流程管理办法
评论
0/150
提交评论