![2025届福建省厦门市第六中学九上数学开学统考试题【含答案】_第1页](http://file4.renrendoc.com/view7/M02/11/2D/wKhkGWcRnHWAMMFIAAGHt6sUJsw327.jpg)
![2025届福建省厦门市第六中学九上数学开学统考试题【含答案】_第2页](http://file4.renrendoc.com/view7/M02/11/2D/wKhkGWcRnHWAMMFIAAGHt6sUJsw3272.jpg)
![2025届福建省厦门市第六中学九上数学开学统考试题【含答案】_第3页](http://file4.renrendoc.com/view7/M02/11/2D/wKhkGWcRnHWAMMFIAAGHt6sUJsw3273.jpg)
![2025届福建省厦门市第六中学九上数学开学统考试题【含答案】_第4页](http://file4.renrendoc.com/view7/M02/11/2D/wKhkGWcRnHWAMMFIAAGHt6sUJsw3274.jpg)
![2025届福建省厦门市第六中学九上数学开学统考试题【含答案】_第5页](http://file4.renrendoc.com/view7/M02/11/2D/wKhkGWcRnHWAMMFIAAGHt6sUJsw3275.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2025届福建省厦门市第六中学九上数学开学统考试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)以下问题,不适合用普查的是()A.了解全班同学每周阅读的时间 B.亚航客机飞行前的安全检测C.了解全市中小学生每天的零花钱 D.某企业招聘部门经理,对应聘人员面试2、(4分)如图,在中,的垂直平行线交于点,则的度数为().A. B. C. D.3、(4分)将不等式组的解集在数轴上表示出来,正确的是()A. B.C. D.4、(4分)如图,▱ABCD的周长为32cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为()A.8cm B.24cm C.10cm D.16cm5、(4分)如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为()A.x>﹣2 B.x<﹣2 C.x>﹣5 D.x<﹣56、(4分)如图,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠B=()A.50° B.40° C.80° D.100°7、(4分)人文书店三月份销售某畅销书100册,五月份销售量达196册,设月平均增长率为x,则可列方程(
)A.100(1+x)=196 B.100(1+2x)=196C.100(1+x2)=196 D.100(1+x)2=1968、(4分)如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是________.10、(4分)如图,在矩形ABCD中,AD=4,E,F分别为边AB,CD上一动点,AE=CF,分别以DE,BF为对称轴翻折△ADE,△BCF,点A,C的对称点分别为P,Q.若点P,Q,E,F恰好在同一直线上,且PQ=1,则EF的长为_____.11、(4分)某超市促销活动,将三种水果采用甲、乙、丙三种方式搭配装进礼盒进行销售.每盒的总成本为盒中三种水果成本之和,盒子成本忽略不计.甲种方式每盒分别装三种水果;乙种方式每盒分别装三种水果.甲每盒的总成本是每千克水果成本的倍,每盒甲的销售利润率为;每盒甲比每盒乙的售价低;每盒丙在成本上提高标价后打八折出售,获利为每千克水果成本的倍.当销售甲、乙、丙三种方式搭配的礼盒数量之比为时,则销售总利润率为__________.12、(4分)边长为的正方形ABCD与直角三角板如图放置,延长CB与三角板的一条直角边相交于点E,则四边形AECF的面积为________.13、(4分)如图,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND的周长是10,则AC的长为__________.三、解答题(本大题共5个小题,共48分)14、(12分)已知一次函数y=(3-k)x-2k2+18.(1)当k为何值时,它的图象经过原点?(2)当k为何值时,它的图象经过点(0,-2)?(3)当k为何值时,它的图象平行于直线y=-x?(4)当k为何值时,y随x增大而减小?15、(8分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.16、(8分)如图,正方形中,是对角线上一个动点,连结,过作,,,分别为垂足.(1)求证:;(2)①写出、、三条线段满足的等量关系,并证明;②求当,时,的长17、(10分)某学校举行“中国梦,我的梦”演讲比赛,初、高中部根据初赛成绩,各选出5名选手组成代表队决赛,初、高中部代表队的选手决赛成绩如图所示:(1)根据图示填写表格:平均数(分)中位数(分)众数(分)初中代表队8585高中代表队80(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好.18、(10分)如图,将绕点A按逆时针方向旋转,使点B落在BC边上的点D处,得.若,,求的度数.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)四边形ABCD中,AD∥BC,AD=BC,对角线AC、BD相交于点O,若CD=3cm,△BOC的周长比△AOB的周长大2cm,则四边形ABCD的周长=______cm.20、(4分)在函数中,自变量的取值范围是__________.21、(4分)如图,在中,,点分别是边的中点,延长到点,使,得四边形.若使四边形是正方形,则应在中再添加一个条件为__________.22、(4分)梯形ABCD中,AD∥BC,E在线段AB上,且2AE=BE,EF∥BC交CD于F,AD=15,BC=21,则EF=__________.23、(4分)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为__________.二、解答题(本大题共3个小题,共30分)24、(8分)甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:根据以上信息,请解答下面的问题;选手A平均数中位数众数方差甲a88c乙7.5b6和92.65(1)补全甲选手10次成绩频数分布图.(2)a=,b=,c=.(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).25、(10分)用适当的方法解下列方程:(1)(2)26、(12分)在△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c.(1)若a=5,b=10,求c的值;(2)若c=,b=1,求a的值.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A、了解全班同学每周阅读的时间适合普查,故A不符合题意;B、亚航客机飞行前的安全检测是重要的调查,故B不符合题意;C、了解全市中小学生每天的零花钱适合抽要调查,故C符合题意;D、某企业招聘部门经理,对应聘人员面试,适合普查,故D不符合题意;故选C.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、A【解析】
根据等腰三角形的性质求出∠ABC=∠C=65°,根据线段的垂直平分线的性质得到AD=BD,得到答案.【详解】解:∵AB=AC,∠A=50°,∴∠ABC=∠C=65°,∵l垂直平分AB,∴AD=BD,∴∠ABD=∠A=50°,∴∠CBD=∠ABC-∠ABD=65°-50°=15°.故选:A本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3、C【解析】
根据解不等式组的方法可以求得原不等式组的解集,并把它的解集在数轴上表示出来.【详解】解:,
由不等式①,得x>3,
由不等式②,得x≤4,
∴原不等式组的解集是3<x≤4,在数轴上表示如下图所示,
,
故选:C.本题考查解一元一次不等式组、在数轴上表示不等式的解集,解答本题的关键是明确解不等式的方法,会在数轴上表示不等式组的解集.4、D【解析】
根据平行四边形性质得出AD=BC,AB=CD,OA=OC,根据线段垂直平分线得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可.【详解】∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=32cm,∴AD+DC=16cm,∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=16cm,故选D.本题考查了平行四边形的性质,线段垂直平分线的性质,三角形的周长,熟练掌握相关性质定理是解题的关键.5、A【解析】
函数y1=3x+b和y1=ax﹣3的图象交于点P(﹣1,﹣5),求不等式3x+b>ax﹣3的解集,就是看函数在什么范围内y1=3x+b的图像在函数y1=ax﹣3的图象上面,据此进一步求解即可.【详解】从图像得到,当x>﹣1时,y1=3x+b的图像对应的点在函数y1=ax﹣3的图像上面,∴不等式3x+b>ax﹣3的解集为:x>﹣1.故选:A.本题主要考查了一次函数与不等式的综合运用,熟练掌握相关方法是解题关键.6、C【解析】
由平行四边形的性质及角平分线的性质可得∠ADC的大小,进而可求解∠B的度数.【详解】解:在Rt△ADF中,∵∠DAF=50°,∴∠ADE=40°,又∵DE平分∠ADC,∴∠ADC=80°,∴∠B=∠ADC=80°.故选:C.本题主要考查平行四边形的性质及角平分线的性质,应熟练掌握,并能做一些简单的计算问题.7、D【解析】
设月平均增长率为x,分别表示出四、五月份的销售量,根据五月份的销售量列式即可.【详解】解:设月平均增长率为x,则四月份销售量为100(1+x),五月份的销售量为:100(1+x)2=196.故答案为:D本题考查了列一元二次方程,理清题中等量关系是列方程的关键.8、B。【解析】当点P由点A向点D运动时,y的值为0;当点p在DC上运动时,y随着x的增大而增大;当点p在CB上运动时,y不变;当点P在BA上运动时,y随x的增大而减小。故选B。二、填空题(本大题共5个小题,每小题4分,共20分)9、x>-2【解析】
根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:观察图象知,当x>-2时,y=3x+b的图象在y=ax-3的图象的上方,故该不等式的解集为x>-2故答案为:x>-2本题考查了议程函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.10、2或【解析】
过点E作,垂足为G,首先证明为等腰三角形,然后设,然后分两种情况求解:I.当QF与PE不重叠时,由翻折的性质可得到,则,II.当QF与PE重叠时,:EF=DF=2x﹣1,FG=x﹣1,然后在中,依据勾股定理列方程求解即可.【详解】解:I.当QF与PE不重叠时,如图所示:过点E作EG⊥DC,垂足为G.设AE=FC=x.由翻折的性质可知:∠AED=∠DEP,EP=AE=FC=QF=x,则EF=2x+1.∵AE∥DG,∴∠AED=∠EDF.∴∠DEP=∠EDF.∴EF=DF.∴GF=DF﹣DG=x+1.在Rt△EGF中,EF2=EG2+GF2,即(2x+1)2=42+(x+1)2,解得:x=2(负值已舍去).∴EF=2x+1=2×2+1=2.II.当QF与PE重叠时,备用图中,同法可得:EF=DF=2x﹣1,FG=x﹣1,在Rt△EFG中,∵EF2=EG2+FG2,∴(2x﹣1)2=42+(x﹣1)2,∴x=或﹣2(舍弃),∴EF=2x﹣1=故答案为:2或.本题主要考查的是翻折的性质、勾股定理的应用,依据勾股定理列出关于x的方程是解题的关键.11、20%.【解析】
分别设每千克A、B、C三种水果的成本为x、y、z,设丙每盒成本为m,然后根据题意将甲、乙、丙三种方式的每盒成本和利润用x表示出来即可求解.【详解】设每千克A、B、C三种水果的成本分别为为x、y、z,依题意得:
6x+3y+z=12.5x,
∴3y+z=6.5x,
∴每盒甲的销售利润=12.5x•20%=2.5x
乙种方式每盒成本=2x+6y+2z=2x+13x=15x,
乙种方式每盒售价=12.5x•(1+20%)÷(1-25%)=20x,
∴每盒乙的销售利润=20x-15x=5x,
设丙每盒成本为m,依题意得:m(1+40%)•0.8-m=1.2x,
解得m=10x.
∴当销售甲、乙、丙三种方式的水果数量之比为2:2:5时,
总成本为:12.5x•2+15x•2+10x•5=105x,
总利润为:2.5x•2+5x×2+1.2x•5=21x,
销售的总利润率为×100%=20%,
故答案为:20%.此题考查了三元一次方程的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解题的关键.12、5【解析】
由四边形ABCD为正方形可以得到∠D=∠B=90°,AD=AB,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE,所以可以证明△AEB≌△AFD,所以S=S,那么它们都加上四边形ABCF的面积,即可四边形AECF的面积=正方形的面积,从而求出其面积.【详解】∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD(ASA),∴S=S,∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=5.故答案为:5.此题考查全等三角形的判定与性质,正方形的性质,解题关键在于掌握判定定理.13、6【解析】∵菱形ABCD中,AB=4,AD的垂直平分线交AC于点N,∴CD=AB=4,AN=DN,∵△CDN的周长=CN+CD+DN=10,∴CN+4+AN=10,∴CN+AN=AC=6.故答案为6.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)k=±;(1)k=4;(4)k>1.【解析】【分析】(1)将点(0,0)代入解析式y=(1-k)x-2k2+18;(2)将点(0,-2)代入解析式y=(1-k)x-2k2+18;(1)由图像平行于直线y=-x,得两个函数的一次项系数相等,即1-k=-1;(4)y随x的增大而减小,根据一次函数的性质可知,一次项系数小于0.【详解】解:(1)∵一次函数的图像经过原点,∴点(0,0)在一次函数的图像上,将点(0,0)代入解析式得:0=-2k2+18,解得:k=±1.又∵y=(1-k)x-2k2+18是一次函数,∴1-k≠0,∴k≠1.∴k=-1.(2)∵图像经过点(0,-2),∴点(0,-2)满足函数解析式,代入得:-2=-2k2+18,解得:k=±.(1)∵图像平行于直线y=-x,∴两个函数的一次项系数相等,即1-k=-1.解得k=4.(4)y随x的增大而减小,根据一次函数的性质可知,一次项系数小于0,即1-k<0,解得k>1.【点睛】本题考核知识点:一次函数性质.解题关键点:熟记一次函数性质.15、证明见解析【解析】试题分析:(1)根据线段垂直平分线的定义得到AF=AD,根据等腰三角形的性质、角平分线的定义证明即可;
(2)作CH⊥DP,交DP于H点,证明△ADE≌△DCH(AAS),得到CH=DE,DH=AE=EG,证明CG=GH,AG=DH,计算即可.试题解析:(1)证明:∵DE=EF,AE⊥DP,∴AF=AD,∴∠AFD=∠ADF,∵∠ADF+∠DAE=∠PAE+∠DAE=90°,∴∠AFD=∠PAE,∵AG平分∠BAF,∴∠FAG=∠GAP.∵∠AFD+∠FAE=90°,∴∠AFD+∠PAE+∠FAP=90°∴2∠GAP+2∠PAE=90°,即∠GAE=45°,∴△AGE为等腰直角三角形;(2)证明:作CH⊥DP,交DP于H点,∴∠DHC=90°.∵AE⊥DP,∴∠AED=90°,∴∠AED=∠DHC.∵∠ADE+∠CDH=90°,∠CDH+∠DCH=90°,∴∠ADE=∠DCH.∵在△ADE和△DCH中,,∴△ADE≌△DCH(AAS),∴CH=DE,DH=AE=EG.∴EH+EG=EH+HD,即GH=ED,∴GH=CH.∴CG=GH.∵AG=EG,∴AG=DH,∴CG+AG=GH+HD,∴CG+AG=(GH+HD),即CG+AG=DG.16、(1)见解析;(2)①GE2+GF2=AG2,证明见解析;②的长为或.【解析】
(1)根据正方形的性质得出△DGE和△BGF是等腰直角三角形,可得GE=DG,GF=BG,结合AB=BD即可得出结论;(2)①连接CG,由SAS证明△ABG≌△CBG,得出AG=CG,证出四边形EGFC是矩形,得出CE=GF,由勾股定理即可得出GE2+GF2=AG2;②设GE=CF=x,则GF=BF=6−x,由①中结论得出方程求出CF=1或CF=5,再分情况讨论,由勾股定理求出BG即可.【详解】解:(1)∵四边形ABCD为正方形,∴∠BCD=90°,∠ABD=∠CDB=∠CBD=45°,AB=BC=CD,∴△ABD是等腰直角三角形,∴AB=BD,∵GE⊥CD,GF⊥BC,∴△DGE和△BGF是等腰直角三角形,∴GE=DG,GF=BG,∴GE+GF=(DG+BG)=BD,∴GE+GF=AB;(2)①GE2+GF2=AG2,证明:连接CG,如图所示:在△ABG和△CBG中,,∴△ABG≌△CBG(SAS),∴AG=CG,∵GE⊥CD,GF⊥BC,∠BCD=90°,∴四边形EGFC是矩形,∴CE=GF,∵GE2+CE2=CG2,∴GE2+GF2=AG2;②设GE=CF=x,则GF=BF=6−x,∵GE2+GF2=AG2,∴,解得:x=1或x=5,当x=1时,则BF=GF=5,∴BG=,当x=5时,则BF=GF=1,∴BG=,综上,的长为或.本题是一道四边形综合题,考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,勾股定理及解一元二次方程等知识,通过作辅助线,构造出全等三角形是解题的关键.17、(1)详见解析;(2)初中部成绩好些【解析】
(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;
(2)根据平均数和中位数的意义即可得出答案;【详解】解:(1)因为共有5名选手,把这些数从小到大排列,则初中代表队的中位数是85;高中代表队的平均数是:(70+100+100+75+80)=85(分),因为100出现的次数最多,则众数是100(分);补全表格如下:平均数(分)中位数(分)众数(分)初中代表队858585高中代表队8580100(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一-个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.18、20°【解析】
由旋转的性质可得∠AED=∠ACB=40°,∠BAD=∠DAE,AB=AD,AC=AE,又因为DE∥AB,所以∠BAD=∠ADE,列出方程求解可得出∠BAD=60°,所以∠ACE=∠AEC=60°,∠DEC=∠AEC-∠AED=60°-40°=20°【详解】解:∵将△ABC绕点A按逆时针方向旋转后得△ADE,∴∠AED=∠ACB=40°,∠BAD=∠DAE,AB=AD,AC=AE,∴∠ABD=∠ADB,∠ACE=∠AEC,∵DE∥AB,∴∠BAD=∠ADE设∠BAD=x,∠ABD=y,=z,可列方程组:∴解得:x=60°即∠BAD=60°∴∠ACE=∠AEC=60°∴∠DEC=∠AEC-∠AED=60°-40°=20°此题考查了旋转的性质以及平行线的性质.注意掌握旋转前后图形的对应关系以及方程思想的应用是关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、16【解析】
根据条件可得:四边形ABCD是平行四边形,得,根据△BOC的周长比△AOB的周长大2cm,可得的长,求解即可.【详解】∵四边形ABCD中,AD∥BC,AD=BC∴四边形ABCD是平行四边形∴OA=OC,AB=CD=3∵△BOC的周长比△AOB的周长大2cm∴OB+OC+BC=OB+OA+AB+2∴BC=AB+2=5∴四边形ABCD的周长:5+5+3+3=16(cm)故答案为:16本题考查了平行四边形边长的问题,掌握平行四边形的性质是解题的关键.20、x≠2【解析】
根据分式有意义的条件进行求解即可.【详解】由题意得,2x-4≠0,解得:x≠2,故答案为:x≠2.本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.21、答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】
先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D.E分别是边AB、AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 真空绝热材料行业市场分析
- 制药原料采购合同范本
- 做商务合同范本
- 2025年度数据中心制冷机电安装合同
- 保洁用品转让合同范例
- ktv设备售后合同范本
- 借条可以转让合同范本
- 2025年新型节能中央空调采购安装与售后服务合同范本
- 养殖水管销售合同范本
- 共同经营股东合同范本
- GB/T 26189.2-2024工作场所照明第2部分:室外作业场所的安全保障照明要求
- 七上 U2 过关单 (答案版)
- 2024年贵银金融租赁公司招聘笔试参考题库附带答案详解
- 英语人教版高中必修三(2019新编)第一单元教案
- GB/T 9535-1998地面用晶体硅光伏组件设计鉴定和定型
- GB 9706.1-2020医用电气设备第1部分:基本安全和基本性能的通用要求
- 口腔颌面外科:第十六章-功能性外科与计算机辅助外科课件
- 植物工厂,设计方案(精华)
- 贷款新人电销话术表
- 音箱可靠性测试规范
- 数据结构ppt课件完整版
评论
0/150
提交评论