2025届江苏泰兴一中数学高一上期末统考模拟试题含解析_第1页
2025届江苏泰兴一中数学高一上期末统考模拟试题含解析_第2页
2025届江苏泰兴一中数学高一上期末统考模拟试题含解析_第3页
2025届江苏泰兴一中数学高一上期末统考模拟试题含解析_第4页
2025届江苏泰兴一中数学高一上期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏泰兴一中数学高一上期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.由直线上的点向圆作切线,则切线长的最小值为()A.1 B.C. D.32.若函数的定义域为,满足:①在内是单调函数;②存在区间,使在上的值域为,则称函数为“上的优越函数”.如果函数是“上的优越函数”,则实数的取值范围是()A.B.C.D.3.已知集合A={x|<2},B={x|log2x>0},则()A. B.A∩B=C.或 D.4.计算:的值为A. B.C. D.5.已知,则的值是A.0 B.–1C.1 D.26.如图,在平面四边形中,,,,将其沿对角线折成四面体,使平面平面,若四面体顶点在同一球面上,则该球的表面积为()A. B.C. D.7.已知向量,,若,则实数的值为()A.或 B.C. D.或38.已知函数的部分图象如图所示,若函数的图象由的图象向右平移个单位长度得到,则()A. B.C. D.9.已知偶函数f(x)在区间单调递增,则满足的x取值范围是()A. B.C. D.10.如图,在中,为边上的中线,,设,若,则的值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知偶函数,x∈R,满足f(1-x)=f(1+x),且当0<x<1时,f(x)=ln(x+),e为自然数,则当2<x<3时,函数f(x)的解析式为______12.集合,则____________13.实数271314.已知f(x)=mx3-nx+1(m,n∈R),若f(-a)=3,则f(a)=______15.已知点,,在函数的图象上,如图,若,则______.16.从含有两件正品和一件次品b的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,取出的两件产品都是正品的概率为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于的不等式(Ⅰ)解该不等式;(Ⅱ)定义区间的长度为,若,求该不等式解集表示的区间长度的最大值18.已知函数(1)求的最小正周期和对称中心;(2)填上面表格并用“五点法”画出在一个周期内的图象19.已知函数.(1)判断函数在上的单调性,并用定义证明;(2)记函数,证明:函数在上有唯一零点.20.在平面内给定三个向量(1)求满足的实数m,n的值;(2)若向量满足,且,求向量的坐标21.设a∈R,是定义在R上的奇函数,且.(1)试求的反函数的解析式及的定义域;(2)设,若时,恒成立,求实数k的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先求圆心到直线的距离,此时切线长最小,由勾股定理不难求解切线长的最小值【详解】切线长的最小值是当直线上的点与圆心距离最小时取得,圆心到直线的距离为,圆的半径为1,故切线长的最小值为,故选:B【点睛】本题考查圆的切线方程,点到直线的距离,是基础题2、D【解析】由于是“上的优越函数”且函数在上单调递减,由题意得,,问题转化为与在时有2个不同的交点,结合二次函数的性质可求【详解】解:因为是“上的优越函数”且函数在上单调递减,若存在区间,使在上的值域为,由题意得,,所以,,即与在时有2个不同的交点,根据二次函数单调性质可知,即故选:D3、A【解析】先分别求出集合A和B,再利用交集定义和并集定义能求出结果【详解】由2-x<2得x>-1,所以A={x|x>-1};由log2x>0得x>1,所以B={x|x>1}.所以A∩B={x|x>1}.故选A【点睛】本题考查交集、并集的求法及应用,考查指数对数不等式的解法,是基础题4、A【解析】运用指数对数运算法则.【详解】.故选:A.【点睛】本题考查指数对数运算,是简单题.5、A【解析】利用函数解析式,直接求出的值.【详解】依题意.故选A.【点睛】本小题主要考查函数值的计算,考查函数的对应法则,属于基础题.6、B【解析】由题意,的中点就是球心,求出球的半径,即可得到球的表面积【详解】解:由题意,四面体顶点在同一个球面上,和都是直角三角形,所以的中点就是球心,所以,球的半径为:,所以球的表面积为:故选B【点睛】本题是基础题,考查四面体的外接球的表面积的求法,找出外接球的球心,是解题的关键,考查计算能力,空间想象能力7、A【解析】先求的坐标,再由向量垂直数量积为0,利用坐标运算即可得解.【详解】由向量,,知.若,则,解得或-3.故选A.【点睛】本题主要考查了向量垂直的坐标表示,属于基础题.8、A【解析】结合图象利用五点法即可求得函数解析式.【详解】由图象可得解得,因为,所以.又因为,所以因为,所以,,即,.又因为,所以..故选:A.9、A【解析】由偶函数性质得函数在上的单调性,然后由单调性解不等式【详解】因为偶函数在区间上单调递增,所以在区间上单调递减,故越靠近轴,函数值越小,因为,所以,解得:.故选:A10、C【解析】分析:求出,,利用向量平行的性质可得结果.详解:因为所以,因为,则,有,,由可知,解得.故选点睛:本题主要考查平面向量的运算,属于中档题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由f(1-x)=f(1+x),再由偶函数性质得到函数周期,再求当2<x<3时f(x)解析式【详解】因为f(x)是偶函数,满足f(1-x)=f(1+x),所以f(1+x)=f(x-1),所以f(x)周期是2当2<x<3时,0<x-2<1,所以f(x-2)=ln(x-2+)=f(x),所以函数f(x)的解析式为f(x)=ln(x-2+)故答案为f(x)=ln(x-2+)【点睛】本题主要考查函数的奇偶性,考查利用函数的周期性求解析式,意在考查学生对这些知识的理解掌握水平和分析推理能力.12、【解析】分别解出集合,,再根据并集的定义计算可得.【详解】∵∴,∵,∴,则,故答案为:【点睛】本题考查指数不等式、对数不等式的解法,并集的运算,属于基础题.13、1【解析】直接根据指数幂运算与对数运算求解即可.【详解】解:27故答案为:114、【解析】直接证出函数奇偶性,再利用奇偶性得解【详解】由题意得,所以,所以为奇函数,所以,所以【点睛】本题是函数中的给值求值问题,一般都是利用函数的周期性和奇偶性把未知的值转化到已知值上,若给点函数为非系非偶函数可试着构造一个新函数为奇偶函数从而求解15、【解析】设的中点为,连接,由条件判断是等边三角形,并且求出和的长度,即根据周期求.【详解】设的中点为,连接,,,且,是等边三角形,并且的高是,,即,,即,解得:.故答案为:【点睛】本题考查根据三角函数的周期求参数,意在考查数形结合分析问题和解决问题的能力,属于基础题型,本题的关键是利用直角三角形的性质和三角函数的性质判断的等边三角形.16、【解析】基本事件总数6,取出的两件产品都是正品包含的基本事件个数2,由此能求出取出的两件产品都是正品的概率.【详解】从含有两件正品和一件次品的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,共包含,,,,,6个基本事件,取出的两件产品都是正品包含,2个基本事件,∴取出的两件产品都是正品的概率为,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)当时,原不等式的解为,当或时,原不等式的解集为,当或时,原不等式的解为(Ⅱ)【解析】(Ⅰ)原不等式化为,根据1<a<2,a=1或a=2分类讨论,能求出原不等式的解集;(Ⅱ)当a≠1且a≠2时,,由此能求出该不等式解集表示的区间长度的最大值试题解析:(Ⅰ)原不等式可化为,当,即时,原不等式的解为;当,即或时,原不等式的解集为;当,即或时,原不等式的解为综上所述,当时,原不等式的解为,当或时,原不等式的解集为,当或时,原不等式的解为(Ⅱ)显然当或时,该不等式解集表示的区间长度不可能最大当且时,,设,,则当时,,当时,,当时,,∴当时,考点:一元二次不等式的解法18、(1),它的对称中心为,(2)答案见解析.【解析】(1):根据二倍角与辅助角公式化简函数为一名一角即可求解;(2):根据五点法定义列表作图即可【小问1详解】∴函数的最小正周期;令,,解得,,可得它的对称中心为,【小问2详解】x0010019、(1)在上单调递增,证明见解析;(2)证明见解析.【解析】(1)根据题意,结合作差法,即可求证;(2)根据题意,结合单调性与零点存在性定理,即可求证.【小问1详解】函数在上单调递增.证明:任取,则,因为,所以,所以,即,因此,故函数在上单调递增.【小问2详解】证明:因为,,所以由函数零点存在定理可知,函数在上有零点,因为和都在上单调递增,所以函数在上单调递增,故函数在上有唯一零点.20、(1);(2)或【解析】(1)根据向量的坐标运算求解即可.(2)设向量再根据平行与模长的公式列式求解即可.【详解】(1)由已知条件以及,可得,即解得(2)设向量,则,.∵,∴解得或∴向量的坐标为或.【点睛】本题主要考查了向量坐标的运算以及平行的与模长的公式,属于中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论