版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昭通市盐津县一中2025届高三数学第一学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题,,则是()A., B.,.C., D.,.2.已知直线过圆的圆心,则的最小值为()A.1 B.2 C.3 D.43.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.4.过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则()A. B. C. D.5.已知m,n是两条不同的直线,,是两个不同的平面,给出四个命题:①若,,,则;②若,,则;③若,,,则;④若,,,则其中正确的是()A.①② B.③④ C.①④ D.②④6.已知,其中是虚数单位,则对应的点的坐标为()A. B. C. D.7.已知集合,,,则()A. B. C. D.8.小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于()A. B. C. D.9.“角谷猜想”的内容是:对于任意一个大于1的整数,如果为偶数就除以2,如果是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入,则输出的()A.6 B.7 C.8 D.910.已知向量,,且与的夹角为,则x=()A.-2 B.2 C.1 D.-111.过圆外一点引圆的两条切线,则经过两切点的直线方程是().A. B. C. D.12.若复数满足,则()A. B. C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线(a>0,b>0)的两个焦点为、,点P是第一象限内双曲线上的点,且,tan∠PF2F1=﹣2,则双曲线的离心率为_____.14.已知椭圆:的左,右焦点分别为,,过的直线交椭圆于,两点,若,且的三边长,,成等差数列,则的离心率为__________.15.设集合,(其中e是自然对数的底数),且,则满足条件的实数a的个数为______.16.已知,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图1,在边长为4的正方形中,是的中点,是的中点,现将三角形沿翻折成如图2所示的五棱锥.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.18.(12分)如图,正方体的棱长为2,为棱的中点.(1)面出过点且与直线垂直的平面,标出该平面与正方体各个面的交线(不必说明画法及理由);(2)求与该平面所成角的正弦值.19.(12分)已知函数,(1)求函数的单调区间;(2)当时,判断函数,()有几个零点,并证明你的结论;(3)设函数,若函数在为增函数,求实数的取值范围.20.(12分)已知函数(1)当时,求不等式的解集;(2)若函数的值域为A,且,求a的取值范围.21.(12分)已知函数.(1)求不等式的解集;(2)设的最小值为,正数,满足,证明:.22.(10分)已知抛物线C:x24py(p为大于2的质数)的焦点为F,过点F且斜率为k(k0)的直线交C于A,B两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.(1)求点G的轨迹方程;(2)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据全称命题的否定为特称命题,得到结果.【详解】根据全称命题的否定为特称命题,可得,本题正确选项:【点睛】本题考查含量词的命题的否定,属于基础题.2、D【解析】
圆心坐标为,代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值.【详解】圆的圆心为,由题意可得,即,,,则,当且仅当且即时取等号,故选:.【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.3、B【解析】
由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.4、B【解析】
设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.【详解】设点、,并设直线的方程为,将直线的方程与抛物线方程联立,消去得,由韦达定理得,,,,,,,,可得,,抛物线的准线与轴交于,的面积为,解得,则抛物线的方程为,所以,.故选:B.【点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.5、D【解析】
根据面面垂直的判定定理可判断①;根据空间面面平行的判定定理可判断②;根据线面平行的判定定理可判断③;根据面面垂直的判定定理可判断④.【详解】对于①,若,,,,两平面相交,但不一定垂直,故①错误;对于②,若,,则,故②正确;对于③,若,,,当,则与不平行,故③错误;对于④,若,,,则,故④正确;故选:D【点睛】本题考查了线面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,属于基础题.6、C【解析】
利用复数相等的条件求得,,则答案可求.【详解】由,得,.对应的点的坐标为,,.故选:.【点睛】本题考查复数的代数表示法及其几何意义,考查复数相等的条件,是基础题.7、D【解析】
根据集合的基本运算即可求解.【详解】解:,,,则故选:D.【点睛】本题主要考查集合的基本运算,属于基础题.8、D【解析】
这是几何概型,画出图形,利用面积比即可求解.【详解】解:事件发生,需满足,即事件应位于五边形内,作图如下:故选:D【点睛】考查几何概型,是基础题.9、B【解析】
模拟程序运行,观察变量值可得结论.【详解】循环前,循环时:,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,满足条件,退出循环,输出.故选:B.【点睛】本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论.10、B【解析】
由题意,代入解方程即可得解.【详解】由题意,所以,且,解得.故选:B.【点睛】本题考查了利用向量的数量积求向量的夹角,属于基础题.11、A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选.12、D【解析】
把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,,,∴,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据正弦定理得,根据余弦定理得2PF1•PF2cos∠F1PF23,联立方程得到,计算得到答案.【详解】∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1•PF2cos∠F1PF23,②①②联解,得,可得,∴双曲线的,结合,得离心率.故答案为:.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和转化能力.14、【解析】
设,,,根据勾股定理得出,而由椭圆的定义得出的周长为,有,便可求出和的关系,即可求得椭圆的离心率.【详解】解:由已知,的三边长,,成等差数列,设,,,而,根据勾股定理有:,解得:,由椭圆定义知:的周长为,有,,在直角中,由勾股定理,,即:,∴离心率.故答案为:.【点睛】本题考查椭圆的离心率以及椭圆的定义的应用,考查计算能力.15、【解析】
可看出,这样根据即可得出,从而得出满足条件的实数的个数为1.【详解】解:,或,在同一平面直角坐标系中画出函数与的图象,由图可知与无交点,无解,则满足条件的实数的个数为.故答案为:.【点睛】考查列举法的定义,交集的定义及运算,以及知道方程无解,属于基础题.16、【解析】
对原方程两边求导,然后令求得表达式的值.【详解】对等式两边求导,得,令,则.【点睛】本小题主要考查二项式展开式,考查利用导数转化已知条件,考查赋值法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)利用线面平行的定义证明即可(2)取的中点,并分别连接,,然后,证明相应的线面垂直关系,分别以,,为轴,轴,轴建立空间直角坐标系,利用坐标运算进行求解即可【详解】证明:(1)在图1中,连接.又,分别为,中点,所以.即图2中有.又平面,平面,所以平面.解:(2)在图2中,取的中点,并分别连接,.分析知,,.又平面平面,平面平面,平面,所以平面.又,所以,,.分别以,,为轴,轴,轴建立如图所示的空间直角坐标系,则,,,,,所以,,.设平面的一个法向量,则,取,则,,所以.又,所以.分析知,直线与平面所成角的正弦值为.【点睛】本题考查线面平行的证明以及利用空间向量求解线面角问题,属于基础题18、(1)见解析(2).【解析】
(1)与平面垂直,过点作与平面平行的平面即可(2)建立空间直角坐标系求线面角正弦值【详解】解:(1)截面如下图所示:其中,,,,分别为边,,,,的中点,则垂直于平面.(2)建立如图所示的空间直角坐标系,则,,,,,所以,,.设平面的一个法向量为,则.不妨取,则,所以与该平面所成角的正弦值为.(若将作为该平面法向量,需证明与该平面垂直)【点睛】考查确定平面的方法以及线面角的求法,中档题.19、(1)单调增区间,单调减区间为,;(2)有2个零点,证明见解析;(3)【解析】
对函数求导,利用导数的正负判断函数的单调区间即可;函数有2个零点.根据函数的零点存在性定理即可证明;记函数,求导后利用单调性求得,由零点存在性定理及单调性知存在唯一的,使,求得为分段函数,求导后分情况讨论:①当时,利用函数的单调性将问题转化为的问题;②当时,当时,在上恒成立,从而求得的取值范围.【详解】(1)由题意知,,列表如下:020极小值极大值所以函数的单调增区间为,单调减区间为,.(2)函数有2个零点.证明如下:因为时,所以,因为,所以在恒成立,在上单调递增,由,,且在上单调递增且连续知,函数在上仅有一个零点,由(1)可得时,,即,故时,,所以,由得,平方得,所以,因为,所以在上恒成立,所以函数在上单调递减,因为,所以,由,,且在上单调递减且连续得在上仅有一个零点,综上可知:函数有2个零点.(3)记函数,下面考察的符号.求导得.当时恒成立.当时,因为,所以.∴在上恒成立,故在上单调递减.∵,∴,又因为在上连续,所以由函数的零点存在性定理得存在唯一的,使,∴,因为,所以∴因为函数在上单调递增,,所以在,上恒成立.①当时,在上恒成立,即在上恒成立.记,则,当变化时,,变化情况如下表:极小值∴,故,即.②当时,,当时,在上恒成立.综合(1)(2)知,实数的取值范围是.【点睛】本题考查利用导数求函数的单调区间、极值、最值和利用零点存在性定理判断函数零点个数、利用分离参数法求参数的取值范围;考查转化与化归能力、逻辑推理能力、运算求解能力;通过构造函数,利用零点存在性定理判断其零点,从而求出函数的表达式是求解本题的关键;属于综合型强、难度大型试题.20、(1)或(2)【解析】
(1)分类讨论去绝对值即可;(2)根据条件分a<﹣3和a≥﹣3两种情况,由[﹣2,1]⊆A建立关于a的不等式,然后求出a的取值范围.【详解】(1)当a=﹣1时,f(x)=|x+1|.∵f(x)≤|2x+1|﹣1,∴当x≤﹣1时,原不等式可化为﹣x﹣1≤﹣2x﹣2,∴x≤﹣1;当时,原不等式可化为x+1≤﹣2x﹣2,∴x≤﹣1,此时不等式无解;当时,原不等式可化为x+1≤2x,∴x≥1,综上,原不等式的解集为{x|x≤﹣1或x≥1}.(2)当a<﹣3时,,∴函数g(x)的值域A={x|3+a≤x≤﹣a﹣3}.∵[﹣2,1]⊆A,∴,∴a≤﹣5;当a≥﹣3时,,∴函数g(x)的值域A={x|﹣a﹣3≤x≤3+a}.∵[﹣2,1]⊆A,∴,∴a≥﹣1,综上,a的取值范围为(﹣∞,﹣5]∪[﹣1,+∞).【点睛】本题考查了绝对值不等式的解法和利用集合间的关于求参数的取值范围,考查了转化思想和分类讨论思想,属于中档题.21、(1)(2)证明见解析【解析】
(1)将表示为分段函数的形式,由此求得不等式的解集.(2)利用绝对值三角不等式求得的最小值,利用分析法,结合基本不等式,证得不等式成立.【详解】(1),不等式,即或或,即有或或,所以所求不等式的解集为.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南省昆明市九县区2023-2024学年六年级上学期英语期末试卷
- 文化行业安全生产培训方案
- 2023年吉林省辽源市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2023年浙江省衢州市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2022年山东省青岛市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年辽宁省营口市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 毕业学员发言稿
- 《MTP管理教材》课件
- 《行业高增长确定》课件
- 暑假计算题综合自检卷练习题数学三年级下册
- 年终奖发放通知范文
- 油田员工劳动合同范例
- 质量安全总监和质量安全员考核奖惩制度
- Unit 5 Music Listening and Talking 说课稿-2023-2024学年高一英语人教版(2019)必修第二册
- 快乐读书吧:中国民间故事(专项训练)-2023-2024学年五年级语文上册(统编版)
- 车间主任个人年终总结
- 2024年甘肃省公务员录用考试《行测》试题及答案解析
- 职业技术学院《工程力学》课程标准
- 消防工程技术专业毕业实习报告范文
- 2024年高等教育法学类自考-00229证据法学考试近5年真题附答案
- 安徽省合肥市一六八中2025届高二生物第一学期期末教学质量检测试题含解析
评论
0/150
提交评论