版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省大兴安岭漠河县第一中学2025届高一数学第一学期期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若幂函数的图象过点,则的值为()A.2 B.C. D.42.已知集合,或,则()A.或 B.C. D.或3.下列四个函数,最小正周期是的是()A. B.C. D.4.设则的值A.9 B.C.27 D.5.命题“∀x∈R,都有x2-x+3>0A.∃x∈R,使得x2-x+3≤0 B.∃x∈RC.∀x∈R,都有x2-x+3≤0 D.∃x∉R6.已知,,则A. B.C. D.7.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片的数字之积为偶数的概率为()A. B.C. D.8.下列关于向量的叙述中正确的是()A.单位向量都相等B.若,,则C.已知非零向量,,若,则D.若,且,则9.已知函数在上是增函数,则实数的取值范围是A. B.C. D.10.如图,有一个水平放置的透明无盖的正方体容器,容器高4cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为3cm,如果不计容器的厚度,则球的体积为A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.若“”为假命题,则实数m最小值为___________.12.若函数满足,且时,,已知函数,则函数在区间内的零点的个数为__________.13.如图,扇形的面积是1,它的弧长是2,则扇形的圆心角的弧度数为______14.=________15.设是R上的奇函数,且当时,,则__________16.直线的倾斜角为,直线的倾斜角为,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最小正周期为4,且满足(1)求的解析式(2)是否存在实数满足?若存在,请求出的取值范围;若不存在,请说明理由18.已知函数.(1)当时,解不等式;(2)若不等式在上恒成立,求实数的取值范围.19.已知函数(且)的图象恒过点A,且点A在函数的图象上.(1)求的最小值;(2)若,当时,求的值域.20.设集合存在正实数,使得定义域内任意x都有.(1)若,证明;(2)若,且,求实数a的取值范围;(3)若,,且、求函数的最小值.21.已知,非空集合,若S是P的子集,求m的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】设,利用的图象过点,求出的解析式,将代入即可求解.【详解】设,因为的图象过点,所以,解得:,所以,所以,故选:C.2、A【解析】应用集合的并运算求即可.【详解】由题设,或或.故选:A3、C【解析】依次计算周期即可.【详解】A选项:,错误;B选项:,错误;C选项:,正确;D选项:,错误.故选:C.4、C【解析】因为,故,所以,故选C.5、A【解析】根据全称命题的否定表示方法选出答案即可.【详解】命题“∀x∈R,都有x2“∃x∈R,使得x2故选:A.6、A【解析】∵∴∴∴故选A7、D【解析】从4张卡片上分别写有数字1,2,3,4中随机抽取2张的基本事件有:12,13,14,23,24,34,一共6种,其中数字之积为偶数的有:12,14,23,24,34一共有5种,所以取出的2张卡片的数字之积为偶数的概率为,故选:D8、C【解析】A选项:单位向量方向不一定相同,故A错误;B选项:当时,与不一定共线,故B错误;C选项:两边平方可得,故C正确;D选项:举特殊向量可知D错误.【详解】A选项:因为单位向量既有大小又有方向,但是单位向量方向不一定相同,故A错误;B选项:当时,,,但与不一定共线,故B错误;C选项:对两边平方得,,所以,故C正确;D选项:比如:,,,所以,,所以,但,故D错误.故选:C.9、A【解析】当时,在上是增函数,且恒大于零,即当时,在上是减函数,且恒大于零,即,因此选A点睛:1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”
函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反10、A【解析】设球的半径为R,根据已知条件得出正方体上底面截球所得截面圆的半径为2cm,球心到截面圆圆心的距离为,再利用球的性质,求得球的半径,最后利用球体体积公式,即可得出答案【详解】设球的半径为R,设正方体上底面截球所得截面圆恰好为上底面正方形的内切圆,该圆的半径为,且该截面圆圆心到水面的距离为1cm,即球心到截面圆圆心的距离为,由勾股定理可得,解得,因此,球的体积为故选A【点睛】本题主要考查了球体的体积的计算问题,解决本题的关键在于利用几何体的结构特征和球的性质,求出球体的半径,着重考查了空间想象能力,以及推理与计算能力,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】写出该命题的否定命题,根据否定命题求出的取值范围即可【详解】解:命题“,有”是假命题,它否定命题是“,有”,是真命题,即,恒成立,所以,因为,在上单调递减,上单调递增,又,,所以所以,的最小值为,故答案为:12、10【解析】根据,可得函数是以2为周期的周期函数,函数在区间内的零点的个数即为函数交点的个数,作出两个函数的图像,结合图像即可得出答案.【详解】解:因为,所以,所以函数是以2为周期的周期函数,令,则,在同一平面直角坐标系中作出函数的图像,如图所示,由图可知函数有10个交点,所以函数在区间内的零点有10个.故答案为:10.13、【解析】根据扇形的弧长公式和面积公式,列出方程组,即可求解.【详解】由题意,设扇形所在圆的半径为,扇形的弧长为,因为扇形的面积是1,它的弧长是2,由扇形的面积公式和弧长公式,可得,解得,.故答案为2.【点睛】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟记扇形的弧长公式和扇形的面积公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】利用两角差的正切公式直接求值即可.【详解】=故答案为【点睛】本题主要考查两角差的正切公式,特殊角的三角函数值,属于基础题.15、【解析】由函数的性质得,代入当时的解析式求出的值,即可得解.【详解】当时,,,是上的奇函数,故答案为:16、【解析】,所以,,故.填三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)存在;【解析】(1)因为的最小正周期为4,可求得,再根据满足,可知的图象关于点对称,结合,即可求出的值,进而求出结果;(2)由(1)可得,再根据,在同一坐标系中作出与的大致图象,根据图像并结合的单调性,建立方程,即可求出,由此即可求出结果.【小问1详解】解:因为的最小正周期为4,所以因为满足,所以的图象关于点对称,所以,所以,即,又,所以所以的解析式为【小问2详解】解:由,可得当时,,在同一坐标系中作出与的大致图象,如图所示,当时,,再结合的单调性可知点的横坐标即方程的根,解得结合图象可知存在实数满足,的取值范围是18、(1);(2).【解析】(1)根据对数函数的定义域及单调性求解即可;(2)由题意原问题转化为在上恒成立,分与两种情况分类讨论,求出最值解不等式即可.【详解】(1)时,函数定义域为解得不等式的解集为(2)设,由题意知,解得,在上恒成立在上恒成立令,的图象是开口向下,对称轴方程为的抛物线.①时,上恒成立等价于解得,这与矛盾.②当时,在上恒成立等价于解得或又综上所述,实数的取值范围是【点睛】关键点点睛:由题意转化为在上恒成立,分类讨论去掉对数符号,转化为二次函数在上最大值或最小值,是解题的关键所在,属于中档题.19、(1)4;(2).【解析】(1)根据对数函数恒过定点(1,0)求出m和n的关系:,则利用转化为基本不等式求最小值;(2)利用换元法令,将问题转化为二次函数求值域问题即可.【小问1详解】∵,∴函数的图象恒过点.∵在函数图象上,∴.∵,∴,,∴,,∴,当且仅当时等号成立,∴的最小值为4.【小问2详解】当时,,∵在上单调递增,∴当时,,令,则,,在上单调递增,∴当时,;当时,.故所求函数的值域为.20、(1)证明见解析;(2);(3).【解析】(1)利用判断(2),化简,通过判别式小于0,求出的范围即可(3)由,推出,得到对任意都成立,然后分离变量,通过当时,当时,分别求解最小值即可【详解】(1),(2)由,故;(3)由,即对任意都成立当时,;当时,;当时,综上:【点睛】思路点睛:本题考查函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语文教学计划(汇编15篇)
- 我错了记叙文
- 个人主管述职报告范文集锦十篇
- 小区物业委托管理协议(34篇)
- 幼儿园小班教案《拼拼看》及教学反思
- 花园小区物业管理投标书
- 借款合同范本(2篇)
- 工业用地租赁协议
- 场地设备租用协议书
- 2025年运载火箭控制系统仿真实时处理系统项目建议书
- 《诊断教学胸腔积液》课件
- 2023-2024学年新疆吐鲁番市高二上学期期末生物试题(解析版)
- 人教版八年级上册数学期末考试试卷及答案
- 配电箱巡检表
- 网页设计与制作案例实战教程课件 第13章 综合实战案例
- 子长市长征文化运动公园项目社会稳定风险评估报告
- 浙教版七年级科学上册期末综合素质检测含答案
- 2024年北京市离婚协议书样本
- 北京邮电大学《操作系统》2022-2023学年期末试卷
- 2023年税收基础知识考试试题库和答案解析
- 双向进入交叉任职制度
评论
0/150
提交评论