版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
东营市重点中学2025届高一数学第一学期期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.已知函数对于任意两个不相等实数,都有成立,则实数的取值范围是()A. B.C. D.3.下列函数中,在区间上是减函数的是()A. B.C. D.4.已知函数f(x)=,若f(a)=f(b)=f(c)且a<b<c,则ab+bc+ac的取值范围为()A. B.C. D.5.下列函数中,既是奇函数又是定义域内的增函数为()A. B.C. D.6.函数()的零点所在的一个区间是()A. B.C. D.7.已知函数,,若对任意,总存在,使得成立,则实数取值范围为A. B.C. D.8.铁路总公司关于乘车行李规定如下:乘坐动车组列车携带品的外部尺寸长、宽、高之和不超过.设携带品外部尺寸长、宽、高分别为(单位:),这个规定用数学关系式表示为()A. B.C. D.9.设函数,若恰有2个零点,则实数的取值范围是()A. B.C. D.10.下列区间中,函数单调递增的区间是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的大小关系是___________________.(用“”连结)12.函数的零点为_________________.13.将正方形沿对角线折成直二面角,有如下四个结论:①;②是等边三角形;③与所成的角为,④取中点,则为二面角的平面角其中正确结论是__________.(写出所有正确结论的序号)14.过两直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线方程为_______________.15.已知.若实数m满足,则m的取值范围是__16.茎叶图表示的是甲,乙两人在5次综合测评中的成绩,记甲,乙的平均成绩分别为a,b,则a,b的大小关系是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,(1)分别求,的值;(2)若角终边上一点,求的值18.已知:,:,分别求m的值,使得和:垂直;平行;重合;相交19.为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位净化剂,空气中释放的浓度(单位:毫克/立方米)随着时间(单位:小时)变化的函数关系式近似为.若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用(1)若一次喷洒4个单位的净化剂,则净化时间约达几小时?(结果精确到0.1,参考数据:,)(2)若第一次喷洒2个单位的净化剂,3小时后再喷洒2个单位的净化剂,设第二次喷洒小时后空气中净化剂浓度为(毫克/立方米),其中①求的表达式;②求第二次喷洒后的3小时内空气中净化剂浓度的最小值20.已知,,求,的值;求的值21.已知函数(1)求的最小正周期;(2)讨论在区间上的单调递增区间
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据一元二次不等式的解法,结合充分性、必要性的定义进行判断即可.【详解】由,由不一定能推出,但是由一定能推出,所以“”是“”的必要不充分条件,故选:C2、B【解析】由题可得函数为减函数,根据单调性可求解参数的范围.【详解】由题可得,函数为单调递减函数,当时,若单减,则对称轴,得:,当时,若单减,则,在分界点处,应满足,即,综上:故选:B3、D【解析】根据二次函数,幂函数,指数函数,一次函数的单调性即可得出答案.【详解】解:对于A,函数在区间上是增函数,故A不符合题意;对于B,函数在区间上是增函数,故B不符合题意;对于C,函数在区间上是增函数,故C不符合题意;对于D,函数在区间上是减函数,故D符合题意.故选:D.4、D【解析】画出函数的图象,根据,,互不相等,且(a)(b)(c),我们令,我们易根据对数的运算性质,及,,的取值范围得到的取值范围【详解】解:作出函数的图象如图,不妨设,,,,,,由图象可知,,则,解得,,则,解得,,的取值范围为故选.【点睛】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力,解答的关键是图象法的应用,即利用函数的图象交点研究方程的根的问题,属于中档题.5、D【解析】根据初等函数的性质及奇函数的定义结合反例逐项判断后可得正确的选项.【详解】对于A,的定义域为,而,但,故在定义域上不是增函数,故A错误.对于B,的定义域为,它不关于原点对称,故该函数不是奇函数,故B错误.对于C,因为时,,故在定义域上不是增函数,故C错误.对于D,因为为幂函数且幂指数为3,故其定义域为R,且为增函数,而,故为奇函数,符合.故选:D.6、C【解析】将各区间的端点值代入计算并结合零点存在性定理判断即可.【详解】由,,,所以,根据零点存在性定理可知函数在该区间存在零点.故选:C7、B【解析】分别求出在的值域,以及在的值域,令在的最大值不小于在的最大值,得到的关系式,解出即可.【详解】对于函数,当时,,由,可得,当时,,由,可得,对任意,,对于函数,,,,对于,使得,对任意,总存在,使得成立,,解得,实数的取值范围为,故选B【点睛】本题主要考查函数的最值、全称量词与存在量词的应用.属于难题.解决这类问题的关键是理解题意、正确把问题转化为最值和解不等式问题,全称量词与存在量词的应用共分四种情况:(1)只需;(2),只需;(3),只需;(4),,.8、C【解析】根据长、宽、高的和不超过可直接得到关系式.【详解】长、宽、高之和不超过,.故选:.9、B【解析】当时,在上单调递增,,当时,令得或(1)若,即时,在上无零点,此时,∴在[1,+∞)上有两个零点,符合题意;(2)若,即时,在(−∞,1)上有1个零点,∴在上只有1个零点,①若,则,∴,解得,②若,则,∴在上无零点,不符合题意;③若,则,∴在上无零点,不符合题意;综上a的取值范围是.选B点睛:解答本题的关键是对实数a进行分类讨论,根据a的不同取值先判断函数在(−∞,1)上的零点个数,在此基础上再判断函数在上的零点个数,看是否满足有两个零点即可10、A【解析】解不等式,利用赋值法可得出结论.【详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,,CD选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用特殊值即可比较大小.【详解】解:,,,故.故答案为:.12、.【解析】解方程即可.【详解】令,可得,所以函数的零点为.故答案为:.【点睛】本题主要考查求函数的零点,属基础题.13、①②④【解析】如图所示,取中点,则,,所以平面,从而可得,故①正确;设正方形边长为,则,所以,又因为,所以是等边三角形,故②正确;分别取,的中点为,,连接,,.则,且,,且,则是异面直线,所成的角在中,,,∴则是正三角形,故,③错误;如上图所示,由题意可得:,则,由可得,据此可知:为二面角的平面角,说法④正确.故答案为:①②④.点睛:(1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题14、【解析】联立两直线方程求得交点坐标,求出平行于直线4x-3y-7=0的直线的斜率,由点斜式的直线方程,并化为一般式【详解】联立,解得∴两条直线2x+y-8=0和x-2y+1=0的交点为(3,2),∵直线4x-3y-7=0的斜率为,∴过两条直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线的方程为y-2=(x-3)即为4x-3y-6=0故答案为4x-3y-6=0【点睛】本题考查了直线的一般式方程与直线平行的关系,训练了二元一次方程组的解法,是基础题15、【解析】由题意可得,进而解不含参数的一元二次不等式即可求出结果.【详解】由题意可知,即,所以,因此,故答案:.16、【解析】分别计算出甲,乙的平均分,从而可比较a,b的大小关系.【详解】易知甲的平均分为,乙的平均分为,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)-7【解析】(1)由的值以及的范围,利用同角三角函数的基本关系即可求的值,进而可得的值,利用两角和的正弦公式求.(2)利用三角函数的定义可求的值,利用正切的二倍角公式可求出的值,再由两角和的正切公式即可求解.【小问1详解】因为,,所以,所以,.【小问2详解】由三角函数的定义可得,由正切的二倍角公式可得,18、(1);(2)-1;(3)3;(4)且.【解析】(1)若l1和l2垂直,则m﹣2+3m=0(2)若l1和l2平行,则(3)若l1和l2重合,则(4)若l1和l2相交,则由(2)(3)的情况去掉即可【详解】若和垂直,则,若和平行,则,,若和重合,则,若和相交,则由可知且【点睛】本题主要考查了两直线的位置关系的应用,解题的关键是熟练掌握直线的不同位置的条件一般式方程的表示19、(1),(2)①(),②28毫克/立方米【解析】(1)根据已知可得,一次喷洒4个单位的净化剂,浓度,分类讨论解出即可(2)①由题意可得(),②由于可化为,然后利用基本不等式可求出其最小值【详解】解:(1)根据已知可得,一次喷洒4个单位的净化剂,浓度,则当时,由,得,所以,当时,由,得,,得,所以,综上,,所以一次喷洒4个单位的净化剂,则净化时间约达小时,(2)①由题意可知,第一次喷洒2个单位的净化剂,3小时后的浓度为(毫克/立方米),所以第二次喷洒小时后空气中净化剂浓度为(),②(),,当且仅当,即时取等号,所以第二次喷洒小时时空气中净化剂浓度达到最小值28毫克/立方米【点睛】关键点点睛:此题考查了函数的实际应用、分段函数的意义和性质、基本不等式、分类讨论的思想,考查分析问题的能力,解题的关键是正确理解题意,求出(),然后利用基本不等式求出其最小值,属于较难题20、(1),;(2).【解析】正切的二倍角公式得,再由同角三角函数关系式即可得的值.先计算然后由角的范围即可确定角.【详解】,且,所以:故:,,,所以:,由于:所以:,所以:,,,,所以:【点睛】本题考查三角函数关系式的恒等变换,考查给值求角问题,通过求角的某种三角函数值来求角,在选取函数时,有以下原则:用已知三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业植筋施工分包协议模板一
- 2024专业清包工合同范本5000字全解析
- 2024公司企业债务重组协议书
- 2024年度个人生活消费信用借款合同书版B版
- 2024年广东省土地评估师资格认证协议版B版
- 2024年度办公设备交易协议模板版B版
- 2024全新深圳商铺租赁合同
- 2024年个人设计协议模板专业定制版B版
- 2024年协议延续补充条款明细协议
- 2024年地方事业单位正式编制招聘协议样本版B版
- 《结肠癌护理查房》课件
- 浙江省七年级上学期语文期中试卷6套【附答案】
- 2024-2030年中国硫酸羟基氯喹原药产业未来发展趋势及投资策略分析报告
- 感恩课程课件教学课件
- 餐饮服务行业食品安全管理人员知识考试题库(附答案)
- 深邃的世界:西方绘画中的科学学习通超星期末考试答案章节答案2024年
- 青岛版五四制义务教育版小学一年级科学上册《玩彩泥》课件
- 2024年中国光伏绿色供应链发展报告-中国绿色供应链联盟光伏专委会
- 《煤矿矿井水防治》课件
- 75%食用酒精安全技术说明书(MSDS)
- 北师大版 四年级上册心理健康 第一课 我是什么样的人 多角度看自己|教案
评论
0/150
提交评论