版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省安宁市实验石江学校高二数学第一学期期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设等比数列的前项和为,若,则的值是()A. B.C. D.42.饕餮纹是青铜器上常见的花纹之一,最早见于长江中下游地区的良渚文化陶器和玉器上,盛行于商代至西周早期.将青铜器中的饕餮纹的一部分画到方格纸上,如图所示,每个小方格的边长为一个单位长度,有一点从点出发,每次向右或向下跳一个单位长度,且向右或向下跳是等可能的,那么点经过3次跳动后恰好是沿着饕餮纹的路线到达点的概率为()A. B.C. D.3.不等式表示的平面区域是一个()A.三角形 B.直角三角形C.矩形 D.梯形4.已知空间向量,则()A. B.C. D.5.若构成空间的一个基底,则下列向量能构成空间的一个基底的是()A.,, B.,,C.,, D.,,6.已知抛物线C:,焦点为F,点到在抛物线上,则()A.3 B.2C. D.7.直线被圆所截得的弦长为()A. B.C. D.8.已知A,B,C是椭圆M:上三点,且A(A在第一象限,B关于原点对称,,过A作x轴的垂线交椭圆M于点D,交BC于点E,若直线AC与BC的斜率之积为,则()A.椭圆M的离心率为 B.椭圆M的离心率为C. D.9.设变量,满足约束条件则的最小值为()A.3 B.-3C.2 D.-210.已知集合,,则()A. B.C. D.11.设双曲线:(,)的右顶点为,右焦点为,为双曲线在第二象限上的点,直线交双曲线于另一个点(为坐标原点),若直线平分线段,则双曲线的离心率为()A. B.C. D.12.在长方体中,,,则与平面所成的角的正弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知、是椭圆()长轴的两个端点,、是椭圆上关于轴对称的两点,直线,的斜率分别为,().若椭圆的离心率为,则的最小值为______14.已知某地区内猫的寿命超过10岁的概率为0.9,超过12岁的概率为0.6,那么该地区内,一只寿命超过10岁的猫的寿命超过12岁的概率为___________.15.已知焦点为F的抛物线的方程为,点Q的坐标为,点P在抛物线上,则点P到y轴的距离与到点Q的距离的和的最小值为______.16.攒尖是古代中国建筑中屋顶的一种结构形式,依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖.如图属重檐四角攒尖,它的上层轮廓可近似看作一个正四棱锥,若此正四棱锥的侧面积是底面积的2倍,则侧面与底面的夹角为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知三点共线,其中是数列中的第n项.(1)求数列的通项;(2)设,求数列的前n项和.18.(12分)椭圆C:的左右焦点分别为,,P为椭圆C上一点.(1)当P为椭圆C的上顶点时,求的余弦值;(2)直线与椭圆C交于A,B,若,求k19.(12分)某校高二年级全体学生参加了一次数学测试,学校利用简单随机抽样的方法从甲班、乙班各抽取五名同学的数学测试成绩(单位:分)得到如下茎叶图,若甲、乙两班数据的中位数相等且平均数也相等.(1)求出茎叶图中m和n的值:(2)若从86分以上(不含86分)的同学中随机抽出两名,求此两人都来自甲班的概率.20.(12分)在四棱锥中,平面,,,,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求直线与平面所成角的正弦值.21.(12分)圆心在轴正半轴上、半径为2的圆与直线相交于两点且.(1)求圆的标准方程;(2)若直线,圆上仅有一个点到直线的距离为1,求直线的方程.22.(10分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和(Ⅰ)求k的值及f(x)的表达式(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意,由等比数列的性质可知成等比数列,从而可得,即可求出的结果.【详解】解:已知等比数列的前项和为,,由等比数列的性质得:成等比数列,且公比不为-1即成等比数列,,,.故选:B.2、B【解析】利用古典概型的概率求解.【详解】解:点从点出发,每次向右或向下跳一个单位长度,跳3次,则样本空间{(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下)},记“3次跳动后,恰好是沿着饕餮纹的路线到达点B”为事件,则{(下,下,右)},由古典概型的概率公式可知故选:B3、D【解析】作出不等式组所表示平面区域,可得出结论.【详解】由可得或,作出不等式组所表示的平面区域如下图中的阴影部分区域所示:由图可知,不等式表示的平面区域是一个梯形.故选:D.4、C【解析】A利用向量模长的坐标表示判断;B根据向量平行的判定,是否存在实数使即可判断;C向量数量积的坐标表示求即可判断;D利用向量坐标的线性运算及数量积的坐标表示求即可.【详解】因为,所以A不正确:因为不存在实数使,所以B不正确;因为,故,所以C正确;因为,所以,所以D不正确故选:C5、B【解析】由空间向量内容知,构成基底的三个向量不共面,对选项逐一分析【详解】对于A:,因此A不满足题意;对于B:根据题意知道,,不共面,而和显然位于向量和向量所成平面内,与向量不共面,因此B正确;对于C:,故C不满足题意;对于D:显然有,选项D不满足题意.故选:B6、D【解析】利用抛物线的定义求解.【详解】因为点在抛物线上,,解得,利用抛物线的定义知故选:D7、A【解析】求得圆心坐标和半径,结合点到直线的距离公式和圆的弦长公式,即可求解.【详解】由圆的方程可知圆心为,半径为,圆心到直线的距离,所以弦长为.故选:A.8、C【解析】设出点,,的坐标,将点,分别代入椭圆方程两式作差,构造直线和的斜率之积,得到,即可求椭圆的离心率,利用,求出,可知点在轴上,且为的中点,则.【详解】设,,,则,,,两式相减并化简得,即,则,则AB错误;∵,,∴,又∵,∴,即,解得,则点在轴上,且为的中点即,则正确.故选:C.9、D【解析】转化为,则最小即直线在轴上的截距最大,作出不等式组表示的可行域,数形结合即得解【详解】转化为,则最小即直线在轴上的截距最大作出不等式组表示的可行域如图中阴影部分所示,作出直线,平移该直线,当直线经过时,在轴上的截距最大,最小,此时,故选:D10、B【解析】根据根式、分式的性质求定义域可得集合A,解一元二次不等式求集合B,再由集合的交运算求.【详解】∵,,∴故选:B11、A【解析】由给定条件写出点A,F坐标,设出点B的坐标,求出线段FC的中点坐标,由三点共线列式计算即得.【详解】令双曲线的半焦距为c,点,设,由双曲线对称性得,线段FC的中点,因直线平分线段,即点D,A,B共线,于是有,即,即,离心率.故选:A12、D【解析】过点作的垂线,垂足为,由线面垂直判定可知平面,则所求角即为,由长度关系求得即可.【详解】在平面内过点作的垂线,垂足为,连接.,,,平面,平面,的正弦值即为所求角的正弦值,,,.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设出点,,,的坐标,表示出直线,的斜率,作和后利用基本不等式求最值,利用离心率求得与的关系,则答案可求详解】解:设,,,,,,,,,,,当且仅当,即时等号成立,是椭圆长轴的两个端点,,是椭圆上关于轴对称的两点,,,即,的最小值为,椭圆的离心率为,,即,得,的最小值为故答案为:14、【解析】根据条件概率公式求解即可.【详解】设事件A:猫的寿命超过10岁,事件B:猫的寿命超过12岁.依题意有,,则一只寿命超过10岁猫的寿命超过12岁的概率.故答案为:15、##【解析】利用定义将所求距离之和的最小值问题,转化为的最小值问题.【详解】焦点F坐标为,抛物线准线为,如图,作垂直于准线于A,交y轴于B,.故答案为:16、【解析】设此四棱锥P-ABCD底面边长为,斜高为,连结AC、BD交于点O,连结OP.则以O为原点,为x、y、z轴正半轴建立空间直角坐标系,用向量法求出侧面与底面夹角.【详解】设此四棱锥P-ABCD底面边长为,斜高为,连结AC、BD交于点O,连结OP.则,,以O为原点,为x、y、z轴正半轴建立空间直角坐标系则,,设平面的法向量为,则,令,则,显然平面的法向量为所以,所以侧面与底面的夹角为故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由三点共线可知斜率相等,即可得出答案;(2)由题可得,利用错位相减法即可求出答案.【小问1详解】三点共线,【小问2详解】①②①—②得18、(1)(2)【解析】(1)利用余弦定理可求顶角的余弦值.(2)联立直线方程和椭圆方程,消元后利用韦达定理结合弦长公式可求的值.【小问1详解】当为椭圆的上顶点时,,在中,由余弦定理知.【小问2详解】设,,将直线与椭圆:联立得:,因为直线过焦点,故恒成立,又,由弦长公式得,化简整理得:,解得.19、(1),(2)【解析】(1)根据茎叶图得甲班中位数为,由此能求出,根据由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,从86分以上(不含86分)的同学中随机抽出两名,用列举法写出基本事件总数,再利用古典概型的概率计算公式即可求解.【小问1详解】根据茎叶图可知1班中位数为86,则,又∵,且故【小问2详解】由(1)可知,甲班86分以上有2人,乙班86以上有2人设甲班86分以上2人为,,乙班86分以上2人为,,从中任取两名同学共有,,,,,共有6组基本事件,且每组出现都是等可能的记:“从86分以上(不含86分)的同学中随机抽出两名,两人都来自甲班”为事件M,事件M包括:共1个基本事件,由古典概型的计算概率的公式知∴所以两人都来自甲班的概率为20、(1)证明见解析;(2)证明见解析;(3).【解析】(1)根据给定条件证得即可推理作答.(2)由已知条件,以点A作原点建立空间直角坐标系,借助空间位置关系的向量证明即可作答.(3)利用(2)中信息,借助空间向量求直线与平面所成角的正弦值.【小问1详解】在四棱锥中,因分别是的中点,则,因平面,平面,所以平面.【小问2详解】在四棱锥中,平面,,以点A为原点,射线AB,AD,AP分别为x,y,z轴非负半轴建立空间直角坐标系,如图,则,而且,则,,设平面的法向量,由,令,得,又,因此有,所以平面.【小问3详解】由(2)知,,令直线与平面所成角为,则有,所以直线与平面所成角的正弦值.21、(1);(2)或.【解析】(1)根据圆的弦长公式进行求解即可;(2)根据平行线的性质,结合直线与圆的位置关系进行求解即可.小问1详解】因为圆的圆心在轴正半轴上、半径为2,所以设方程为:,圆心,设圆心到直线的距离为,因为,所以有,或舍去,所以圆的标准方程为;【小问2详解】由(1)可知:,圆的半径为,因为直线,所以设直线的方程为,因为圆上仅有一个点到直线的距离为1,所以直线与该圆相离,当两平行线间的距离为,于是有:,当时,圆心到直线的距离为:,符合题意;当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省泸州市泸州高级中学校2024-2025学年七年级上学期1月期末历史试卷(含答案)
- 湖北省部分重点中学2024-2025学年高三上学期第二次联考(期末)地理试卷(含答案)
- 睡眠医学中心:精准医疗引领健康睡眠未来趋势 头豹词条报告系列
- 2025年度不动产房产证购房合同附带车位使用权转让协议3篇
- 2024版多功能办公设备采购合同6篇
- 2024荒田承包合同范本
- 福建省南平市建阳县徐市中学高二数学理上学期期末试卷含解析
- 2025年EPS节能建筑项目施工安全管理合同3篇
- 2024薪资协议书-文化创意产业创作者模板2篇
- 2024版幕墙施工合同范文
- 邮政银行借款合同
- 2024届广州市番禺区重点名校中考数学全真模拟试题含解析
- 出现产品质量问题退换货承诺
- 合伙开托管班协议书4篇
- 广告宣传物料广告宣传物料配送方案
- 2024年长春医学高等专科学校单招职业适应性测试题库及答案解析
- 项目维修维保方案
- 上海市浦东新区2023-2024学年一年级上学期期末考试数学试题
- 前列腺增生药物治疗
- 足球教练员管理制度模版
- IQC来料检验记录表
评论
0/150
提交评论