安徽省合肥三中2025届高一数学第一学期期末学业水平测试模拟试题含解析_第1页
安徽省合肥三中2025届高一数学第一学期期末学业水平测试模拟试题含解析_第2页
安徽省合肥三中2025届高一数学第一学期期末学业水平测试模拟试题含解析_第3页
安徽省合肥三中2025届高一数学第一学期期末学业水平测试模拟试题含解析_第4页
安徽省合肥三中2025届高一数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥三中2025届高一数学第一学期期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图象如图所示,将的图象向右平移个单位长度后得到的函数图象关于轴对称,则的最小值为()A. B.C. D.2.关于x的方程恰有一根在区间内,则实数m的取值范围是()A. B.C. D.3.纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大的贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是(℃),空气的温度是(℃),经过t分钟后物体的温度T(℃)可由公式得出,如温度为90℃的物体,放在空气中冷却2.5236分钟后,物体的温度是50℃,若根据对数尺可以查询出,则空气温度是()A.5℃ B.10℃C.15℃ D.20℃4.已知集合,或,则()A.或 B.C. D.或5.已知函数的值域为R,则a的取值范围是()A. B.C. D.6.已知,则角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限7.已知幂函数是偶函数,则函数恒过定点A. B.C. D.8.已知扇形的周长为15cm,圆心角为3rad,则此扇形的弧长为()A.3cm B.6cmC.9cm D.12cm9.已知命题:函数过定点,命题:函数是幂函数,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. B.C.90 D.81二、填空题:本大题共6小题,每小题5分,共30分。11.角的终边经过点,且,则________.12.计算:__________.13.函数的图象一定过定点,则点的坐标是________.14.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为__________.15.设集合,,若,则实数的取值范围是________16.已知,且,若不等式恒成立,则实数的最大值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△中,的对边分别是,已知,.(1)若△的面积等于,求;(2)若,求△的面积.18.已知函数的图象经过点(1)求的解析式;(2)若不等式对恒成立,求m的取值范围19.已知图像关于轴对称(1)求的值;(2)若方程有且只有一个实根,求实数的取值范围20.已知函数()求函数的最小正周期()求函数的单调递减区间21.已知,为锐角,,.(1)求的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】观察图象可得函数的最大值,最小值,周期,由此可求函数的解析式,根据三角函数变换结论,求出平移后的函数解析式,根据平移后函数图象关于轴对称,列方程求的值,由此确定其最小值.【详解】根据函数的部分图象,可得,,∴因,可得,又,求得,故将的图象向右平移个单位长度后得到的函数的图象,因为的图象关于直线轴对称,故,即,故的最小值为,故选:C2、D【解析】把方程的根转化为二次函数的零点问题,恰有一个零点属于,分为三种情况,即可得解.【详解】方程对应的二次函数设为:因为方程恰有一根属于,则需要满足:①,,解得:;②函数刚好经过点或者,另一个零点属于,把点代入,解得:,此时方程为,两根为,,而,不合题意,舍去把点代入,解得:,此时方程为,两根为,,而,故符合题意;③函数与x轴只有一个交点,横坐标属于,,解得,当时,方程的根为,不合题意;若,方程的根为,符合题意综上:实数m的取值范围为故选:D3、B【解析】依题意可得,即,即可得到方程,解得即可;【详解】:依题意,即,又,所以,即,解得;故选:B4、A【解析】应用集合的并运算求即可.【详解】由题设,或或.故选:A5、D【解析】首先求出时函数的值域,设时,的值域为,依题意可得,即可得到不等式组,解得即可;【详解】解:由题意可得当时,所以的值域为,设时,的值域为,则由的值域为R可得,∴,解得,即故选:D6、A【解析】根据题意,由于,则说明正弦值和余弦值都是正数,因此可知角所在的象限是第一象限,故选A.考点:三角函数的定义点评:主要是考查了三角函数的定义的运用,属于基础题7、D【解析】根据幂函数和偶函数的定义可得的值,进而可求得过的定点.【详解】因为是幂函数,所以得或,又偶函数,所以,函数恒过定点.故选:.【点睛】本题主要考查的是幂函数和偶函数的定义,以及对数函数性质的应用,是基础题.8、C【解析】利用扇形弧长公式进行求解.【详解】设扇形弧长为lcm,半径为rcm,则,即且,解得:(cm),故此扇形的弧长为9cm.故选:C9、B【解析】根据幂函数的性质,从充分性与必要性两个方面分析判断.【详解】若函数是幂函数,则过定点;当函数过定点时,则不一定是幂函数,例如一次函数,所以是的必要不充分条件.故选:B.10、B【解析】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的斜四棱柱,其底面面积为:3×6=18,前后侧面的面积为:3×6×2=36,左右侧面的面积为:,故棱柱的表面积为:故选B点睛:本题考查知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键,由三视图判断空间几何体(包括多面体、旋转体和组合体)的结构特征是高考中的热点问题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意利用任意角的三角函数的定义直接计算【详解】角的终边经过点,且,解得.故答案为:12、4【解析】故答案为413、【解析】令,得,再求出即可得解.【详解】令,得,,所以点的坐标是.故答案:14、【解析】由题分析若对任意,总存在,使得成立,则的最大值小于等于的最大值,进而求解即可【详解】由题,因为,对于函数,则当时,是单调递增的一次函数,则;当时,在上单调递增,在上单调递减,则,所以的最大值为4;对于函数,,因为,所以,所以;所以,即,故,故答案为:【点睛】本题考查函数恒成立问题,考查分段函数的最值,考查正弦型函数的最值,考查转化思想15、【解析】对于方程,由于,解得集合,由,根据区间端点值的关系列式求得的范围【详解】解:对于,由于,,,;∴∵,集合,∴解得,,则实数的取值范围是故答案为:16、9【解析】利用求的最小值即可.【详解】,当且仅当a=b=时取等号,不等式恒成立,则m≤9,故m的最大值为9.故答案为:9.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)先根据条件可得到,由三角形的面积可得,与联立得到方程组后可解得.(2)由可得,分和两种情况分别求解,最后可得的面积为试题解析:(1)∵,,∴,∴,又,∴,∵△的面积,∴,由,解得.(2)由,得得,∴或①当时,则,由(1)知,,又∴.∴;②当时,则,代入,得,,∴.综上可得△的面积为.点睛:解答本题(2)时,在得到后容易出现的错误是将直接约掉,这样便失掉了三角形的一种情况,这是在三角变换中经常出现的一种错误.为此在判断三角形的形状或进行三角变换时,在遇到需要约分的情况时,需要考虑约掉的部分是否为零,不要随意的约掉等式两边的公共部分18、(1),(2)【解析】(1)直接代入两点计算得到答案.(2)变换得到,判断在上单调递减,计算,解不等式得到答案.【详解】(1)由题意得解得,.故,(2)不等式,即不等式,则不等式在上恒成立,即不等式上恒成立,即在上恒成立因为在上单调递减,在上单调递减,所以在上单调递减,故.因为在上恒成立,所以,即,解得故m的取值范围为【点睛】本题考查了函数的解析式,恒成立问题,将恒成立问题转化为函数的最值是解题的关键.19、(1);(2)或.【解析】(1)根据为偶函数,将等式化简整理即可得到的值;(2)首先将方程化简为:,进而可得,令,则关于的方程只有一个正实数根,先考虑的情形是否符合,然后针对二次方程的根的分布分该方程有一正一负根、有两个相等的正根进行讨论求解,并保证即可,最后根据各种情况讨论的结果写出的取值范围的并集即可.【详解】(1)因为为偶函数,所以即,∴∴,∴(2)依题意知:∴由得令,则①变为,只需关于的方程只有一个正根即可满足题意(1),不合题意(2)①式有一正一负根,则经验证满足,(3)若①式有两相等正根,则,此时若,则,此时方程无正根故舍去若,则,且因此符合要求综上得:或.【点睛】关键点点睛:本题解题的关键是根据对数的运算性质得到有一个根,通过换元得到的方程只有一个正实数根,进而可根据分类讨论思想,结合二次方程根分布的知识求解即可.20、().(),【解析】利用两角和差余弦公式、二倍角公式和辅助角公式整理出;(1)根据求得结果;(2)令,解出的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论