版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四省名校2025届高一数学第一学期期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线的倾斜角为A.30° B.60°C.120° D.150°2.若直线与圆的两个交点关于直线对称,则,的直线分别为()A., B.,C., D.,3.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p34.1弧度的圆心角所对的弧长为6,则这个圆心角所夹的扇形的面积是()A.3 B.6C.18 D.365.已知函数,则使得成立的的取值范围是()A. B.C. D.6.已知,,函数的零点为c,则()A.c<a<b B.a<c<bC.b<a<c D.a<b<c7.设入射光线沿直线y=2x+1射向直线,则被反射后,反射光线所在的直线方程是A. B.C. D.8.设a为实数,“”是“对任意的正数x,”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件9.下列各组角中,两个角终边不相同的一组是()A.与 B.与C.与 D.与10.设和两个集合,定义集合,且,如果,,那么A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数在内恰有一个零点,则实数a的取值范围为______12.已知集合(1)当时,求的非空真子集的个数;(2)当时,若,求实数的取值范围13.已知角A为△ABC的内角,cosA=-4514.二次函数的部分对应值如下表:342112505则关于x不等式的解集为__________15.函数f(x)=+的定义域为____________16.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若,解不等式;(2)解关于x的不等式.18.判断并证明在的单调性.19.已知函数=(1)判断的奇偶性;(2)求在的值域20.已知.(1)求的最小正周期;(2)求的单调增区间;(3)当时,求的值域.21.已知函数.(1)判断函数f(x)的奇偶性;(2)讨论f(x)的单调性;(3)解不等式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】直线的斜率为,所以倾斜角为30°.故选A.2、A【解析】由圆的对称性可得过圆的圆心且直线与直线垂直,从而可求出.【详解】因为直线与圆的两个交点关于直线对称,故直线与直线垂直,且直线过圆心,所以,,所以,.故选:A【点睛】本题考查直线方程的求法,注意根据圆的对称性来探求两条直线的位置关系以及它们满足的某些性质,本题属于基础题.3、A【解析】首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,然后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2,p3的关系,从而求得结果.【详解】设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.4、C【解析】由弧长的定义,可求得扇形的半径,再由扇形的面积公式,即可求解.【详解】由1弧度的圆心角所对的弧长为6,利用弧长公式,可得,即,所以扇形的面积为.故选C.【点睛】本题主要考查了扇形的弧长公式和扇形的面积公式的应用,着重考查了计算能力,属于基础题.5、C【解析】令,则,从而,即可得到,然后构造函数,利用导数判断其单调性,进而可得,解不等式可得答案【详解】令,则,,所以,所以,令,则,所以,所以,所以在单调递增,所以由,得,所以,解得,故选:C【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得,再构造函数,利用函数的单调性解不等式.6、B【解析】由函数零点存在定理可得,又,,从而即可得答案.【详解】解:因为在上单调递减,且,,所以的零点所在区间为,即.又因为,,所以a<c<b故选:B.7、D【解析】由可得反射点A(−1,−1),在入射光线y=2x+1上任取一点B(0,1),则点B(0,1)关于y=x的对称点C(1,0)在反射光线所在的直线上根据点A(−1,−1)和点C(1,0)坐标,利用两点式求得反射光线所在的直线方程是,化简可得x−2y−1=0.故选D.8、A【解析】根据题意利用基本不等式分别判断充分性和必要性即可.【详解】若,因为,则,当且仅当时等号成立,所以充分性成立;取,因为,则,当且仅当时等号成立,即时,对任意的正数x,,但,所以必要性不成立,综上,“”是“对任意的正数x,”的充分非必要条件.故选:A.9、D【解析】由终边相同的角的性质逐项判断即可得解.【详解】对于A,因为,所以与终边相同;对于B,因为,所以与终边相同;对于C,因为,所以与终边相同;对于D,若,解得,所以与终边不同.故选:D.10、D【解析】根据的定义,可求出,,然后即可求出【详解】解:,;∴.故选D.【点睛】考查描述法的定义,指数函数的单调性,正弦函数的值域,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据实数a的正负性结合零点存在原理分类讨论即可.【详解】当时,,符合题意,当时,二次函数的对称轴为:,因为函数在内恰有一个零点,所以有:,或,即或,解得:,或,综上所述:实数a的取值范围为,故答案为:12、(1)30(2)或【解析】(1)当时,可得中元素的个数,进而可得的非空真子集的个数;(2)根据,可分和两种情况讨论,可得出实数的取值范围【小问1详解】当时,,共有5个元素,所以的非空真子集的个数为【小问2详解】(1)当时,,解得;(2)当时,根据题意作出如图所示的数轴,可得或解得:或综上可得,实数的取值范围是或13、35【解析】根据同角三角函数的关系,结合角A的范围,即可得答案.【详解】因为角A为△ABC的内角,所以A∈(0,π),因为cosA=-所以sinA=故答案为:314、【解析】根据所给数据得到二次函数的对称轴,即可得到,再根据函数的单调性,即可得解;【详解】解:∵,∴对称轴为,∴,又∵在上单调递减,在上单调递增,∴的解集为故答案为:15、【解析】根据题意,结合限制条件,解指数不等式,即可求解.【详解】根据题意,由,解得且,因此定义域为.故答案为:.16、【解析】正方体体积8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π故答案为:12π点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)答案见解析【解析】(1)由抛物线开口向上,且其两个零点为,,可得不等式的解集.(2)由对应的二次方程的判别式,其两根为,.讨论时,时,时,其两根的大小,由此可得不等式的解集.【详解】解:(1)当时,不等式可化为,又由,得,.因为抛物线开口向上,且其两个零点为,,所以不等式的解集为.(2)对于二次函数,其对应的二次方程的判别式,其两根为,.当,即时,不等式的解集为;当,即时,不等式的解集为;当,即时,不等式的解集为;综上,时,不等式的解集为;时,不等式无解;时,不等式的解集为.18、函数在单调递增【解析】根据函数单调性的定义进行证明即可【详解】根据函数单调性定义:任取,所以因为,所以,所以所以原函数单调递增。19、(1)奇函数(2)【解析】(1)由奇偶性的定义判断(2)由对数函数性质求解【小问1详解】,则,的定义域为,,故是奇函数【小问2详解】,当时,,故,即在的值域为20、(1)(2),(3)【解析】(1)利用降幂公式等化简可得,结合周期公式可得结果;(2)由,,解不等式可得增区间;(3)由的范围,得出的范围,根据正弦函数的性质即可得结果.【小问1详解】∴函数的最小正周期.【小问2详解】由,得,∴所求函数的单调递增区间为,.【小问3详解】∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度购车环保补贴申请合同3篇
- 二零二五版电子商务支付平台跨境支付合规审查合同3篇
- 二零二五年货车驾驶员驾驶技能考核及评价合同3篇
- 二零二五版房产抵押合同变更及合同履行监督协议6篇
- 二零二五版酒店物业管理安保保洁服务全面承包合同3篇
- 二零二五版高空作业安全协议书-高空雨棚安全检测与维护合同3篇
- 二零二五年度空压机租赁与能源管理优化合同3篇
- 二零二五版人工智能企业股权整合与行业应用开发合同3篇
- 二零二五年度会议礼品定制及赠送服务合同范本3篇
- 二零二五年度特种防盗门制造与销售承揽合同范本3篇
- 上海车位交易指南(2024版)
- 医学脂质的构成功能及分析专题课件
- 新疆塔城地区(2024年-2025年小学六年级语文)部编版期末考试(下学期)试卷及答案
- 2024年9月时事政治试题带答案
- 汽车供应商审核培训
- 高技能人才培养的策略创新与实践路径
- 《计算机网络 》课件第1章
- 1《地球的表面》说课稿-2024-2025学年科学五年级上册教科版
- GB/T 44764-2024石油、石化和天然气工业腐蚀性石油炼制环境中抗硫化物应力开裂的金属材料
- 自动化招聘笔试试题及答案
- 重庆市主城四区2025届高一物理第一学期期末联考试题含解析
评论
0/150
提交评论