版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省越崎中学高一数学第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的定义域与值域均为,则()A. B.C. D.12.若圆锥的底面半径为2cm,表面积为12πcm2,则其侧面展开后扇形的圆心角等于()A. B.C. D.3.将函数y=sin(2x+)的图象向右平移个单位长度后,得到的图象对应的函数解析式为()A. B.C. D.4.若,则()A B.C. D.5.若动点.分别在直线和上移动,则线段的中点到原点的距离的最小值为()A. B.C. D.6.2018年,晓文同学参加工作月工资为7000元,各种用途占比统计如下面的条形图.后来晓文同学加强了体育锻炼,目前月工资的各种用途占比统计如下面的折线图.已知目前的月就医费比刚参加工作时少200元,则目前晓文同学的月工资为A.7000 B.7500C.8500 D.95007.设命题p:∀x∈0,1,x>xA.∀x∈0,1,x<x3C.∀x∈0,1,x≤x38.为了得到函数,的图象,只要把函数,图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度9.我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈;上底宽3丈,长4丈;高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为A.13.25立方丈 B.26.5立方丈C.53立方丈 D.106立方丈10.函数(且)与函数在同一坐标系内的图象可能是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数在区间上是增函数,则下列结论正确是__________(将所有符合题意的序号填在横线上)①函数在区间上是增函数;②满足条件的正整数的最大值为3;③.12.由直线上的任意一个点向圆引切线,则切线长的最小值为________.13.已知函数的定义域为,当时,,若,则的解集为______14.若,则的终边所在的象限为______15.函数f(x)=log2(x2-1)的单调递减区间为________16.已知函数fx=2-ax,x≤1,ax-1,x>1①存在实数a,使得fx②对任意实数a(a>0且a≠1),fx都不是R③存在实数a,使得fx的值域为R④若a>3,则存在x0∈0,+其中所有正确结论的序号是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,1求的值;2若,,求18.已知函数.(1)当函数取得最大值时,求自变量x的集合;(2)完成下表,并在平面直角坐标系内作出函数在的图象.x0y19.设,其中(1)当时,求函数的图像与直线交点的坐标;(2)若函数有两个不相等的正数零点,求a的取值范围;(3)若函数在上不具有单调性,求a的取值范围20.已知函数(1)求的最小正周期、最大值、最小值;(2)求函数的单调区间;21.如图是函数的部分图象.(1)求函数的解析式;(2)若,,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据函数的定义域可得,,,再根据函数的值域即可得出答案.【详解】解:∵的解集为,∴方程的解为或4,则,,,∴,又因函数的值域为,∴,∴.故选:A.2、D【解析】利用扇形面积计算公式、弧长公式及其圆的面积计算公式即可得出【详解】设圆锥的底面半径为r=2,母线长为R,其侧面展开后扇形的圆心角等于θ由题意可得:,解得R=4又2π×2=Rθ∴θ=π故选D【点睛】本题考查了扇形面积计算公式、弧长公式及其圆的面积计算公式,考查了推理能力与计算能力,属于基础题3、B【解析】直接利用函数图像变化原则:“左加右减,上加下减”得到平移后的函数解析式【详解】函数图像向右平移个单位,由得,故选B【点睛】本题考查函数图像变换:“左加右减,上加下减”,需注意“左加右减”时平移量作用在x上,即将变成,是函数图像平移了个单位,而非个单位4、C【解析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果【详解】将式子进行齐次化处理得:故选:C【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论5、C【解析】先分析出M的轨迹,再求到原点的距离的最小值.【详解】由题意可知:M点的轨迹为平行于直线和且到、距离相等的直线l,故其方程为:,故到原点的距离的最小值为.故选:C【点睛】解析几何中与动点有关的最值问题一般的求解思路:①几何法:利用图形作出对应的线段,利用几何法求最值;②代数法:把待求量的函数表示出来,利用函数求最值.6、C【解析】根据两次就医费关系列方程,解得结果.【详解】参加工作就医费为,设目前晓文同学的月工资为,则目前的就医费为,因此选C.【点睛】本题考查条形图以及折线图,考查基本分析判断与求解能力,属基础题.7、D【解析】直接根据全称命题的否定,即可得到结论.【详解】因为命题p:∀x∈0,1,x所以¬p:∃x∈0,1,x故选:D8、C【解析】利用辅助角公式可得,再由三角函数的平移变换原则即可求解.【详解】解:,,为了得到函数,的图象,只要把函数,图象上所有的点向左平移个单位长度故选:C.9、B【解析】根据题目给出的体积计算方法,将几何体已知数据代入计算,求得几何体体积【详解】由题,刍童的体积为立方丈【点睛】本题考查几何体体积的计算,正确利用题目条件,弄清楚问题本质是关键10、C【解析】分,两种情况进行讨论,结合指数函数的单调性和抛物线的开口方向和对称轴选出正确答案.【详解】解:当时,增函数,开口向上,对称轴,排除B,D;当时,为减函数,开口向下,对称轴,排除A,故选:C.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.二、填空题:本大题共6小题,每小题5分,共30分。11、①②③【解析】!由题函数在区间上是增函数,则由可得为奇函数,则①函数在区间(,0)上是增函数,正确;由可得,即有满足条件的正整数的最大值为3,故②正确;由于由题意可得对称轴,即有.,故③正确故答案为①②③【点睛】本题考查正弦函数的图象和性质,重点是对称性和单调性的运用,考查运算能力,属于中档题12、【解析】利用切线和点到圆心的距离关系即可得到结果.【详解】圆心坐标,半径要使切线长最小,则只需要点到圆心的距离最小,此时最小值为圆心到直线的距离,此时,故答案为:【点睛】本题考查了直线与圆的位置关系,同时考查了点到直线的距离公式,属于基础题.13、##【解析】构造,可得在上单调递减.由,转化为,利用单调性可得答案【详解】由,得,令,则,又,所以在上单调递减由,得,因为,所以,所以,得故答案为:.14、第一或第三象限【解析】将表达式化简,,二者相等,只需满足与同号即可,从而判断角所在的象限.【详解】由,,若,只需满足,即与同号,因此的终边在第一或第三象限.故答案为:第一或第三象限.15、【解析】由复合函数同增异减得单调减区间为的单调减区间,且,解得故函数的单调递减区间为16、①②④【解析】通过举反例判断①.,利用分段函数的单调性判断②③,求出y=2-ax关于y轴的对称函数为y=a-2x,利用y=a-2x与【详解】当a=2时,fx=0,x≤1,2x-1,x>1当x>1时,若fx是R上的减函数,则2-a<00<a<12-a≥当0<a<1时,y=ax-1单减,且当x>1时,值域为0,1,而此时y=2-ax单增,最大值为2-a,所以函数当1<a<2时,y=2-ax单增,y=ax-1单增,若fx的值域为R,则2-a≥a1-1=1,所以a≤1,与由①可知,当a=2时,函数fx值域不为R;当a>2时,y=2-ax单减,最小值为2-a,y=ax-1单增,且ax-1>1又y=2-ax关于y轴的对称函数为y=a-2x,若a>3,则a-2>1=a1-1=1,但指数函数y=ax-1的增长速度快于函数y=a-2故答案为:①②④三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)=1;(Ⅱ)=【解析】(1)将代入可得:,在利用诱导公式和特殊角的三角函数值即可;(2)因为,根据两角和的余弦公式需求出和,,,则,根据二倍角公式求出代入即可试题解析:(1)因为,所以;(2)因为,,则所以,考点:1.诱导公式;2.二倍角公式;3.两角和余弦18、(1)(2)答案见解析【解析】(1)由三角恒等变换求出解析式,再求得最大值时的x的集合,(2)由五点法作图,列出表格,并画图即可.【小问1详解】令,函数取得最大值,解得,所以此时x集合为.【小问2详解】表格如下:x0y11作图如下,19、(1),(2)(3)【解析】(1)联立方程直接计算;(2)根据二次方程零点个数的判别式及函数值正负情况直接求解;(3)根据二次函数单调性可得参数范围.【小问1详解】当时,,联立方程,解得:或,即交点坐标为和.【小问2详解】由有两个不相等的正数零点,得方程有两个不等的正实根,,即,解得;【小问3详解】函数在上单调递增,在上单调递减;又函数在上不具有单调性,所以,即.20、(1),最大值1,最小值-1;(2)在上单调递增;上单调递减;【解析】(1)利用两角差余弦公式、两角和正弦公式化简函数式,进而求的最小正周期、最大值、最小值;(2)利用的性质求函数的单调区间即可.【详解】(1),∴,且最大值、最小值分别为1,-1;(2)由题意,当时,单调递增,∴,,单调递增;当时,单调递减,∴,,单调递减;综上,当,单调递增;,单调递减;【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育馆环境卫生承诺书
- 2024年研发设计与技术咨询协议3篇
- 证券公司投资资产管理
- SP馆租赁合同模板
- 铁路轨道施工安全合同
- 设计工作室隔断租赁协议
- 跨境支付项目澄清函参考模板
- 环保行业污染防治培训费管理办法
- 能源利用评审员管理办法
- 机场化粪池改造工程合同
- 脊柱区1教学讲解课件
- KK5-冷切锯操作手册-20151124
- 教你炒红炉火版00缠论大概
- 消防管道施工合同
- 大学生计算与信息化素养-北京林业大学中国大学mooc课后章节答案期末考试题库2023年
- 2023年国开大学期末考复习题-3987《Web开发基础》
- 《骆驼祥子》1-24章每章练习题及答案
- 国际金融课后习题答案(吴志明第五版)第1-9章
- 《基于杜邦分析法周大福珠宝企业盈利能力分析报告(6400字)》
- 全国英语等级考试三级全真模拟试题二-2023修改整理
- 02R112 拱顶油罐图集
评论
0/150
提交评论