![河北保定市容城博奥学校2025届高二上数学期末经典模拟试题含解析_第1页](http://file4.renrendoc.com/view14/M0B/01/25/wKhkGWcRa0GAaIVBAAG6qZQo5NQ145.jpg)
![河北保定市容城博奥学校2025届高二上数学期末经典模拟试题含解析_第2页](http://file4.renrendoc.com/view14/M0B/01/25/wKhkGWcRa0GAaIVBAAG6qZQo5NQ1452.jpg)
![河北保定市容城博奥学校2025届高二上数学期末经典模拟试题含解析_第3页](http://file4.renrendoc.com/view14/M0B/01/25/wKhkGWcRa0GAaIVBAAG6qZQo5NQ1453.jpg)
![河北保定市容城博奥学校2025届高二上数学期末经典模拟试题含解析_第4页](http://file4.renrendoc.com/view14/M0B/01/25/wKhkGWcRa0GAaIVBAAG6qZQo5NQ1454.jpg)
![河北保定市容城博奥学校2025届高二上数学期末经典模拟试题含解析_第5页](http://file4.renrendoc.com/view14/M0B/01/25/wKhkGWcRa0GAaIVBAAG6qZQo5NQ1455.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北保定市容城博奥学校2025届高二上数学期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,是函数的部分图象,且关于直线对称,则()A. B.C. D.2.已知中,内角所对的边分别,若,,,则()A. B.C. D.3.已知两条平行直线:与:间的距离为3,则()A.25或-5 B.25C.5 D.21或-94.二次方程的两根为2,,那么关于的不等式的解集为()A.或 B.或C. D.5.已知是两个数1,9的等比中项,则圆锥曲线的离心率为()A.或 B.或C. D.6.在正三棱锥中,,且,M,N分别为BC,AD的中点,则直线AM和CN夹角的余弦值为()A. B.C. D.7.如图,在正方体中,E为的中点,则直线与平面所成角的正弦值为()A. B.C. D.8.下列抛物线中,以点为焦点的是()A. B.C. D.9.下列关于抛物线的图象描述正确的是()A.开口向上,焦点为 B.开口向右,焦点为C.开口向上,焦点为 D.开口向右,焦点为10.离心率为,长轴长为6的椭圆的标准方程是A. B.或C. D.或11.如果,那么下列不等式成立的是()A. B.C. D.12.已知等差数列的前项和为,,公差,.若取得最大值,则的值为()A.6或7 B.7或8C.8或9 D.9或10二、填空题:本题共4小题,每小题5分,共20分。13.如图,在长方体ABCD﹣A'B'C'D'中,点P,Q分别是棱BC,CD上的动点,BC=4,CD=3,CC'=2,直线CC'与平面PQC'所成的角为30°,则△PQC'的面积的最小值是__14.已知正方体的棱长为为的中点,为面内一点.若点到面的距离与到直线的距离相等,则三棱锥体积的最小值为__________15.用数学归纳法证明等式:,验证时,等式左边________16.函数的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列的前项和为,且,.(1)求的通项公式;(2)求.18.(12分)已知椭圆与双曲线有相同的焦点,且的短轴长为(1)求的方程;(2)若直线与交于P,Q两点,,且的面积为,求k19.(12分)已知点,.(1)求以为直径的圆的方程;(2)若直线被圆截得的弦长为,求值20.(12分)已知公差大于零的等差数列的前项和为,且满足,,(1)求数列的通项公式;(2)若数列是等差数列,且,求非零常数;21.(12分)已知函数在处有极值.(1)求常数a,b的值;(2)求函数在上的最值.22.(10分)已知抛物线的焦点F到准线的距离为2(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先根据条件确定为函数的极大值点,得到的值,再根据图像的单调性和导数几何意义得到和的正负即可判断.【详解】根据题意得,为函数部分函数的极大值点,所以,又因为函数在单调递增,由图像可知处切线斜率为锐角,根据导数的几何意义,所以,又因为函数在单调递增,由图像可知处切线斜率为钝角,根据导数的几何意义所以.即.故选:C.2、B【解析】利用正弦定理可直接求得结果.【详解】在中,由正弦定理得:.故选:B.3、A【解析】根据平行直线的性质,结合平行线间距离公式进行求解即可.【详解】因为直线:与:平行,所以有,因为两条平行直线:与:间距离为3,所以,或,当时,;当时,,故选:A4、B【解析】根据,确定二次函数的图象开口方向,再由二次方程的两根为2,,写出不等式的解集.【详解】因为二次方程的两根为2,,又二次函数的图象开口向上,所以不等式的解集为或,故选:B5、A【解析】根据题意可知,当时,根据椭圆离心率公式,即可求出结果;当时,根据双曲线离心率公式,即可求出结果.【详解】因为是两个数1,9的等比中项,所以,所以,当时,圆锥曲线,其离心率为;当时,圆锥曲线,其离心率为;综上,圆锥曲线的离心率为或.故选:A.6、B【解析】由题意可得两两垂直,所以以为原点,所在的直线分别为轴,建立空间直角坐标系,利用空间向量求解【详解】因为,所以两两垂直,所以以为原点,所在的直线分别为轴,建立空间直角坐标系,如图所示,因为,所以,因为M,N分别为BC,AD的中点,所以,所以,设直线AM和CN所成的角为,则,所以直线AM和CN夹角的余弦值为,故选:B7、D【解析】构建空间直角坐标系,求直线的方向向量、平面的法向量,应用空间向量的坐标表示,求直线与平面所成角的正弦值.【详解】以点D为坐标原点,向量分别为x,y,z轴建立空间直角坐标系,则,,,,可得,,,设面的法向量为,有,取,则,所以,,,则直线与平面所成角的正弦值为故选:D.8、A【解析】由题意设出抛物线的方程,再结合焦点坐标即可求出抛物线的方程.【详解】∵抛物线为,∴可设抛物线方程为,∴即,∴抛物线方程为,故选:A.9、A【解析】把化成抛物线标准方程,依据抛物线几何性质看开口方向,求其焦点坐标即可解决.【详解】,即.则,即故此抛物线开口向上,焦点为故选:A10、B【解析】试题解析:当焦点在x轴上:当焦点在y轴上:考点:本题考查椭圆的标准方程点评:解决本题的关键是焦点位置不同方程不同11、D【解析】利用不等式的性质分析判断每个选项.【详解】由不等式的性质可知,因为,所以,,故A错误,D正确;由,可得,,故B,C错误.故选:D12、B【解析】根据题意可知等差数列是,单调递减数列,其中,由此可知,据此即可求出结果.【详解】在等差数列中,所以,所以,即,又等差数列中,公差,所以等差数列是单调递减数列,所以,所以等差数列的前项和为取得最大值,则的值为7或8.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】设三棱锥C﹣C′PQ的高为h,CQ=x,CP=y,由体积法求得的关系,由直线CC’与平面C’PQ成的角为30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面积的最小值【详解】解:设三棱锥C﹣C′PQ的高为h,CQ=x,CP=y,由长方体性质知两两垂直,所以,,,,,所以,由得,所以,∵直线CC’与平面C’PQ成的角为30°,∴h=2,∴,,∴xy≥8,再由体积可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面积的最小值是8故答案为:814、##【解析】由题意可知,点在平面内的轨迹是以为焦点,直线为准线的抛物线,如图在底面建立平面直角坐标系,求出抛物线方程,直线的方程,将直线向抛物线平移,恰好与抛物线相切时,切点为点,此时的面积最小,则三棱锥体积的最小【详解】因为为面内一点,且点到面的距离与到直线的距离相等,所以点在平面内的轨迹是以为焦点,直线为准线的抛物线,如图在底面,以所在的直线为轴,以的中垂线为轴建立平面直角坐标系,则,设抛物线方程为,则,得,所以抛物线方程为,,直线的方程为,即,设与直线平行且与抛物线相切的直线方程为,由,得,由,得,所以与抛物线相切的直线为,此时切点为,且的面积最小,因为点到直线的距离为,所以的面积的最小值为,所以三棱锥体积的最小值为,故答案为:15、【解析】根据数学归纳法的步骤即可解答.【详解】用数学归纳法证明等式:,验证时,等式左边=.故答案为:.16、1【解析】由解析式知定义域为,讨论、、,并结合导数研究的单调性,即可求最小值.【详解】由题设知:定义域为,∴当时,,此时单调递减;当时,,有,此时单调递减;当时,,有,此时单调递增;又在各分段的界点处连续,∴综上有:时,单调递减,时,单调递增;∴故答案为:1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设的公比为,根据题意求得的值,即可求得的通项公式;(2)由(1)求得,得到,利用等比数列的求和公式,即可求解.【小问1详解】解:设的公比为,因为,,则,又因为,解得,所以的通项公式为.【小问2详解】解:由,可得,则,所以.18、(1)(2)或k=1.【解析】(1)根据题意求得双曲线的焦点即知椭圆焦点,结合椭圆短轴长,可求得椭圆标准方程;(2)将直线方程和椭圆方程联立,整理得,从而得到根与系数的关系式,然后求出弦长以及到直线PQ的距离,进而表示出,由题意得关于k的方程,解得答案.【小问1详解】双曲线即,故双曲线交点坐标为,由此可知椭圆焦点也为,又的短轴长为,故,所以,故椭圆的方程为;【小问2详解】联立,整理得:,其,设,则,所以=,点到直线PQ的距离为,所以=,又的面积为,则=,解得或k=1.19、(1).(2)或【解析】(1)根据题意,有A、B的坐标可得线段AB的中点即C的坐标,求出AB的长即可得圆C的半径,由圆的标准方程即可得答案;(2)根据题意,由直线与圆的位置关系可得点C到直线x﹣my+1=0的距离d,结合点到直线的距离公式可得,解可得m的值,即可得答案【详解】(1)根据题意,点,,则线段的中点为,即的坐标为;圆是以线段为直径的圆,则其半径,圆的方程为.(2)根据题意,若直线被圆截得的弦长为,则点到直线的距离,又由,则有,变形可得:,解可得或【点睛】本题考查直线与圆的位置关系以及弦长的计算,涉及圆的标准方程,属于基础题20、(1)(2)【解析】(1)利用等差数列的性质可得,联立方程可得,代入等差数列的通项公式可求;(2)代入等差数列的前和公式可求,进一步可得,然后结合等差数列的定义可得,从而可求.【详解】(1)为等差数列,,又是方程的两个根,(2)由(1)可知,为等差数列,舍去)当时,为等差数列,满足要求【点睛】本题主要考查了等差数列的定义、性质、通项公式、前项和公式的综合运用,属于中档题.21、(1);(2)最大值为-1,最值为-5.【解析】(1)根据给定条件结合函数的导数建立方程,求解方程并验证作答.(2)利用导数探讨函数在上的单调性即可计算作答.【小问1详解】依题意:,则,解得:,当时,,当时,,当时,,则函数在处有极值,所以.【小问2详解】由(1)知:,,,当时,,当时,,因此,在上单调递增,在上单调递减,于是得,而,,则,所以函数在上的最大值为-1,最值为-5.22、(1);(2)最大值为.【解析】(1)由抛物线焦点与准线的距离即可得解;(2)设,由平面向量的知识可得,进而可得,再由斜率公式及基本不等式即可得解.【详解】(1)抛物线的焦点,准线方程为,由题意,该抛物线焦点到准线的距离为,所以该抛物线的方程为;(2)[方法一]:轨迹方程+基本不等式法设,则,所以,由在抛物线上可得,即,所以直线的斜率,当时,;当时,,当时,因为,此时,当且仅当,即时,等号成立;当时,;综上,直线斜率的最大值为.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q的轨迹方程为设直线的方程为,则当直线与抛物线相切时,其斜率k取到最值.联立得,其判别式,解得,所以直线斜率的最大值为[方法三]:轨迹方程+换元求最值法同方法一得点Q的轨迹方程为设直线的斜率为k,则令,则的对称轴为,所以.故直线斜率的最大值为[方法四]参数+基本不等式法由题可设因,所以于是,所以则直线的斜率为当且仅当,即,时等号成立,所以直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022-2027年中国旅游度假村行业市场全景评估及发展战略研究报告
- 2025至2030年中国女式沙滩凉鞋数据监测研究报告
- 2018-2024年中国载货汽车市场深度评估及投资方向研究报告
- 上市合同范例
- 2025-2030年中国汽车电瓶糟盖行业深度研究分析报告
- 教育行业线上课程开发与运营规范
- 买卖窗帘合同范例
- 共同卖房合同范本
- 农业车辆承包协议合同范本
- 书采购加工合同范本
- 《学校体育科研方法》课件
- 护士团队的协作和领导力培养培训课件
- QFD模板含计算公式计分标准说明模板
- 慢阻肺试题练习
- 人工智能在生物医学伦理与法律中的基因编辑与生命伦理问题研究
- 馒头制作过程
- 国有资产管理办法-国有资产管理办法条例
- 公务车辆定点维修车辆保养(附彩图) 投标方案
- 00015-英语二自学教程-unit3
- 第二章共混改性基本原理
- 乳腺专业知识课件
评论
0/150
提交评论