版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届青海省玉树市高一数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.集合,集合,则等于()A. B.C. D.2.若函数的图象上存在一点满足,且,则称函数为“可相反函数”,在①;②;③;④中,为“可相反函数”的全部序号是()A.①② B.②③C.①③④ D.②③④3.在平面直角坐标系中,直线的斜率是()A. B.C. D.4.已知,,,则a,b,c三个数的大小关系是()A. B.C. D.5.函数的定义域为()A. B.C. D.6.已知定义域为R的函数在单调递增,且为偶函数,若,则不等式的解集为()A. B.C. D.7.已知三棱锥的三条棱,,长分别是3、4、5,三条棱,,两两垂直,且该棱锥4个顶点都在同一球面上,则这个球的表面积是A B.C. D.都不对8.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式).A.2寸 B.3寸C.4寸 D.5寸9.三个数的大小关系为()A. B.C. D.10.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行二、填空题:本大题共6小题,每小题5分,共30分。11.直线与直线的距离是__________12.设函数,则__________13.化简=________14.已知则________15.已知sinα+cosα=,α∈(-π,0),则tanα=________.16.计算____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度)(1)求关于的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?18.设,且.(1)求的值;(2)求在区间上的最大值.19.已知函数的图象时两条相邻对称轴之间的距离为,将的图象向右平移个单位后,所得函数的图象关于y轴对称.(1)求函数的解析式;(2)若,求值.20.已知函数(1)若的定义域为R,求a的取值范围;(2)若对恒成立,求a的取值范围21.已知,为锐角,,.(1)求的值;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】直接利用交集的定义求解即可.【详解】由题得.故选:B2、D【解析】根据已知条件把问题转化为函数与直线有不在坐标原点的交点,结合图象即可得到结论.【详解】解:由定义可得函数为“可相反函数”,即函数与直线有不在坐标原点的交点①的图象与直线有交点,但是交点在坐标原点,所以不是“可相反函数”;②的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”;③与直线有交点在第二象限,且交点不在坐标原点,所以是“可相反函数”;④的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”.结合图象可得:只有②③④符合要求;故选:D3、A【解析】将直线转化成斜截式方程,即得得出斜率.【详解】解:由题得,原式可化为,斜率.故选:A.4、A【解析】利用指数函数的单调性比较的大小,再用作中间量可比较出结果.【详解】因为指数函数为递减函数,且,所以,所以,因为,,所以,综上所述:.故选:A5、B【解析】根据函数的解析式有意义,列出不等式,即可求解.【详解】由题意,函数有意义,则满足,解得且,所以函数的定义域为.故选:B.6、D【解析】根据题意,由函数为偶函数分析可得函数的图象关于直线对称,结合函数的单调性以及特殊值分析可得,解可得的取值范围,即可得答案【详解】解:根据题意,函数为偶函数,则函数的图象关于直线对称,又由函数在,单调递增且f(3),则,解可得:,即不等式的解集为;故选:D7、B【解析】长方体的一个顶点上的三条棱分别为,且它的八个顶点都在同一个球面上,则长方体的对角线就是球的直径,长方体的对角线为球的半径为则这个球的表面积为故选点睛:本题考查的是球的体积和表面积以及球内接多面体的知识点.由题意长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积即可8、B【解析】根据题意可得平地降雨量,故选B.考点:1.实际应用问题;2.圆台的体积.9、A【解析】利用指数对数函数的性质可以判定,从而做出判定.【详解】因为指数函数是单调增函数,是单调减函数,对数函数是单调减函数,所以,所以,故选:A10、C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】12、【解析】先根据2的范围确定表达式,求出;后再根据的范围确定表达式,求出.【详解】因为,所以,所以.【点睛】分段函数求值问题,要先根据自变量的范围,确定表达式,然后代入求值.要注意由内而外求值,属于基础题.13、【解析】利用对数的运算法则即可得出【详解】解:原式lg0.12=2+2lg10﹣1=2﹣2故答案为【点睛】本题考查了对数的运算法则,属于基础题14、【解析】分段函数的求值,在不同的区间应使用不同的表达式.【详解】,故答案为:.15、.【解析】由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得和的值,可得的值.【详解】因为sinα+cosα=,①所以sin2α+cos2α+2sinαcosα=,即2sinαcosα=.因为α∈(-π,0),所以sinα<0,cosα>0,所以sinα-cosα=,与sinα+cosα=联立解得sinα=-,cosα=,所以tanα=.故答案为:.【点睛】该题考查的是有关三角函数恒等变换化简求值问题,涉及到的知识点有同角三角函数关系式,在解题的过程中,注意这三个式子是知一求二,属于简单题目.16、5【解析】由分数指数幂的运算及对数的运算即可得解.【详解】解:原式,故答案为:5.【点睛】本题考查了分数指数幂的运算及对数的运算,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),【解析】(1)由弧长计算及扇环面周长为30米,得,所以,(2)花坛的面积为.装饰总费用为,所以花坛的面积与装饰总费用的比,令,则,当且仅当t=18时取等号,此时答:当x=1时,花坛的面积与装饰总费用的比最大.18、(1);(2)2【解析】(1)直接由求得的值;(2)由对数的真数大于0求得的定义域,判定在上的增减性,求出在上的最值,即得值域【详解】解:(1)∵,∴,∴;(2)由得,∴函数的定义域为,,∴当时,是增函数;当时,是减函数,∴函数在上的最大值是【点睛】本题考查了求函数的定义域和值域的问题,利用对数函数的真数大于0可求得定义域,利用函数的单调性可求得值域19、(1)(2)【解析】(1)根据两条相邻对称轴之间的距离可求得函数的周期,进而求得,根据平移之后函数图象关于轴对称,可得值,从而可得函数解析式;(2)将所求角用已知角来表示即可求得结果【小问1详解】由题意可知,,即,所以,,将的图象向右平移个单位得,因为的图象关于轴对称,所以,,所以,,因为,所以,所以;【小问2详解】,所以,,,所以20、(1)(2)【解析】(1)转化为,可得答案;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《火龙果栽培技术》课件
- 2024届河北省高三上学期期末考试历史试题(解析版)
- 《研究生前沿讲座》课件
- 单位管理制度集合大合集人事管理篇
- 单位管理制度合并选集【职工管理篇】十篇
- 单位管理制度分享汇编职工管理篇
- 单位管理制度呈现合集员工管理篇十篇
- 单位管理制度呈现大合集人员管理篇十篇
- (高频选择题60题)第3单元 中国特色社会主义道路(解析版)
- 阿拉斯加犬行业销售工作总结
- 浙江省金华市十校2023-2024学年高一上学期1月期末考试物理试题 含解析
- 物业管理师考试题库单选题100道及答案解析
- 校园智能安防系统安装合同
- 2024年专利代理人专利法律知识考试试卷及参考答案
- 2024-2025学年九年级上学期化学期中模拟试卷(人教版2024+含答案解析)
- 江苏大学《操作系统》2023-2024学年期末试卷
- 《国际经济与贸易》考试复习题库(含答案)
- 高中日语(新版标准日本语初级上册)全册复习总结课件
- 2024年国家开放大学本科《知识产权法》第一至四次形考任务试题及答案
- 国有企业考勤制度管理办法
- 人教版六年级上册道德与法治知识点
评论
0/150
提交评论