版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁葫芦岛协作校2025届高一上数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是幂函数,且在第一象限内是单调递减,则的值为()A.-3 B.2C.-3或2 D.32.设函数的最小正周期为,且在内恰有3个零点,则的取值范围是()A. B.C. D.3.若,,则角的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限4.全集U={1,2,3,4,5,6},M={x|x≤4},则M等于()A.{1,3} B.{5,6}C.{1,5} D.{4,5}5.将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,则函数在上的最大值和最小值分别为A. B.C. D.6.已知某扇形的面积为,圆心角为,则该扇形的半径为()A.3 B.C.9 D.7.满足2,的集合A的个数是A.2 B.3C.4 D.88.下列函数既不是奇函数,也不是偶函数,且在上单调递增是A. B.C. D.9.已知是定义在上的奇函数,且当时,,那么A. B.C. D.10.设,且,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最大值与最小值之和等于______12.函数的最大值为().13.已知是R上的奇函数,且当时,,则的值为___________.14.若,,则=______;_______15.化简=________16.圆的半径是6cm,则圆心角为30°的扇形面积是_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某地一天从6~14时的温度变化曲线近似满足函数(,).(1)求这一天6~14时的最大温差;(2)写出这段曲线的解析式;(3)预测当天12时的温度(,结果保留整数).18.(1)已知,,求的值;(2)若,求的值.19.某旅游风景区发行的纪念章即将投放市场,根据市场调研情况,预计每枚该纪念章的市场价y(单位:元)与上市时间x(单位:天)的数据如下:上市时间x天2620市场价y元10278120(1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价y与上市时间x的变化关系并说明理由:①;②;③;(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格;(3)利用你选取的函数,若存在,使得不等式成立,求实数k的取值范围.20.已知函数,且(1)求a的值;(2)判断在区间上的单调性,并用单调性的定义证明你的判断21.(1)求两条平行直线3x+4y-6=0与ax+8y-4=0间的距离(2)求两条垂直的直线2x+my-8=0和x-2y+1=0的交点坐标
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据幂函数的定义判断即可【详解】由是幂函数,知,解得或.∵该函数在第一象限内是单调递减的,∴.故.故选:A.【点睛】本题考查了幂函数的定义以及函数的单调性问题,属于基础题2、D【解析】根据周期求出,结合的范围及,得到,把看做一个整体,研究在的零点,结合的零点个数,最终列出关于的不等式组,求得的取值范围【详解】因为,所以.由,得.当时,,又,则因为在上的零点为,,,,且在内恰有3个零点,所以或解得.故选:D3、B【解析】应用诱导公式可得,,进而判断角的终边所在象限.【详解】由题设,,,所以角的终边在第二象限.故选:B4、B【解析】M即集合U中满足大于4的元素组成的集合.【详解】由全集U={1,2,3,4,5,6},M={x|x≤4}则M={5,6}.故选:B【点睛】本题考查求集合的补集,属于基础题.5、A【解析】先化简f(x),再结合函数图象的伸缩变换,得到函数y=g(x)的解析式,进而根据正弦型函数最值的求法,求出函数的最大值与最小值【详解】∵函数,∴g(x)∵x∈∴4x∈∴当4x时,g(x)取最大值1;当4x时,g(x)取最小值故选A.6、A【解析】根据扇形面积公式求出半径.【详解】扇形的面积,解得:故选:A7、C【解析】由条件,根据集合的子集的概念与运算,即可求解【详解】由题意,可得满足2,的集合A为:,,,2,,共4个故选C【点睛】本题主要考查了集合的定义,集合与集合的包含关系的应用,其中熟记集合的子集的概念,准确利用列举法求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题8、C【解析】是偶函数,是奇函数,和既不是奇函数也不是偶函数,在上是减函数,是增函数,故选C9、C【解析】由题意得,,故,故选C考点:分段函数的应用.10、C【解析】将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.二、填空题:本大题共6小题,每小题5分,共30分。11、0【解析】先判断函数为奇函数,则最大值与最小值互为相反数【详解】解:根据题意,设函数的最大值为M,最小值为N,又由,则函数为奇函数,则有,则有;故答案为0【点睛】本题考查函数奇偶性,利用奇函数的性质求解是解题关键12、【解析】利用可求最大值.【详解】因为,即,,取到最小值;所以函数的最大值为.故答案为:.【点睛】本题主要考查三角函数的最值问题,借助正弦函数的值域能方便求解,侧重考查数学抽象的核心素养.13、【解析】由已知函数解析式可求,然后结合奇函数定义可求.【详解】因为是R上的奇函数,且当时,,所以,所以故答案为:14、①.②.【解析】首先指对互化,求,再求;第二问利用指数运算,对数,化简求值.【详解】,,所以;,,所以故答案为:;15、【解析】利用对数的运算法则即可得出【详解】解:原式lg0.12=2+2lg10﹣1=2﹣2故答案为【点睛】本题考查了对数的运算法则,属于基础题16、3π【解析】根据扇形的面积公式即可计算.【详解】,.故答案为:3π.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)20℃;(2)();(3)27℃.【解析】(1)观察图象求出函数的最大、最小值即可计算作答;(2)根据给定图象求出解析式中相关参数,即可代入作答;(3)求出当时的y值作答.【小问1详解】观察图象得:6时的温度最低为10℃,14时的温度最高为30℃,所以这一天6~14时的最大温差为20℃.【小问2详解】观察图象,由解得:,周期,,即,则,而当时,,则,又,有,所以这段曲线的解析式为:,.小问3详解】由(2)知,当时,,预测当天12时的温度为27℃.18、(1);(2).【解析】(1)由条件利用同角三角函数的基本关系求出,即可求得的值;(2)把要求的式子利用诱导公式化为,进而而求得结果.【详解】解:(1)∵,,∴∴(2)若,则.19、(1)选择,理由见解析,(2)上市天数10天,最低价格70元,(3)【解析】(1)根据函数的单调性选取即可.(2)把点代入中求解参数,再根据二次函数的最值求解即可.(3)参变分离后再求解最值即可.【详解】(1)随着时间x的增加,y的值先减后增,而所给的三个函数中和显然都是单调函数,不满足题意,∴选择.(2)把点代入中,得,解得,∴当时,y有最小值故当纪念章上市10天时,该纪念章的市场价最低,最低市场价为70元,(3)由题意,令,若存在使得不等式成立,则须,又,当且仅当时,等号成立,所以.【点睛】本题主要考查了二次函数模型解决实际问题的题型,需要根据题意求解对应的二次函数式再分析最值与求参数.属于中等题型.20、(1)4(2)在区间上单调递减,证明见解析【解析】(1)直接根据即可得出答案;(2)对任意,且,利用作差法比较的大小关系,即可得出结论.【小问1详解】解:由得,解得;【小问2详解】解:在区间内单调递减,证明:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省泸州市泸县五中2024-2025学年高一(上)期末生物试卷(含答案)
- 习作:我的家人 说课稿-2024-2025学年语文四年级上册统编版
- 钼产品深加工技术改造产能提升项目可行性研究报告写作模板-申批备案
- 广西壮族自治区南宁市2024-2025学年八年级上学期期末生物试题(无答案)
- 安徽省淮北市和淮南市2025届高三第一次质量检测历史试卷(含答案)
- 陕西省宝鸡市(2024年-2025年小学六年级语文)部编版期中考试((上下)学期)试卷及答案
- Unit 2 Making a Difference Developing ideas The power of good 说课稿-2023-2024学年高一英语外研版(2019)必修第三册
- Unit 1 developing the topic-Oral communication 说课稿 2024-2025学年仁爱科普版(2024)七年级英语上册
- 贵州黔南经济学院《数据结构Ⅰ》2023-2024学年第一学期期末试卷
- 新疆塔城地区(2024年-2025年小学六年级语文)统编版综合练习((上下)学期)试卷及答案
- 0-3岁婴幼儿心理发展知到智慧树期末考试答案题库2024年秋杭州师范大学
- (正式版)QB∕T 8049-2024 家用和类似用途微压富氧舱
- 银行分管财务副行长个人述职报告4篇全文
- 学校信息中心述职报告(共3篇)
- 小说与散文的区别课件
- 景德镇绿地昌南里项目视频讨论会ua根据0108意见修改
- 豆腐的制作工艺及配方
- DB-T 29-202-2022 天津市建筑基坑工程技术规程
- 福建省社会体育指导员信息表
- DB51∕T 5060-2013 四川省预拌砂浆生产与应用技术规程
- 珠心算习题汇总(可以打印版A4)
评论
0/150
提交评论