版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重难点专项突破06旋转之“费马点”模型13种题型【知识梳理】最值问题是中考常考题型,费马点属于几何中的经典题型,目前全国范围内的中考题都是从经典题改编而来,所以应熟练掌握费马点等此类最值经典题。【考点剖析】一.一元一次方程的应用(共1小题)1.(2020春•江北区期末)如图,已知直线AB与直线CD相交于点O,∠BOE=90°,OF平分∠BOD,∠BOC:∠AOC=1:3.(1)求∠DOE,∠COF的度数;(2)若射线OF,OE同时绕O点分别以2°/s,4°/s的速度,顺时针匀速旋转,当射线OE,OF的夹角为90°时,两射线同时停止旋转.设旋转时间为t,试求t值.【分析】(1)根据平角的定义和∠BOC:∠AOC=1:3可求∠BOC的度数,根据对顶角相等可求∠AOD的度数,根据角的和差关系可求出∠DOE的度数,根据平角的定义和角平分线的定义可求∠BOF的度数,根据角的和差关系求出∠COF的度数;(2)先求出∠EOF的度数,再根据射线OE、OF的夹角为90°,列出方程求解即可.【解答】解:(1)∵∠BOC:∠AOC=1:3,∴∠BOC=180°×=45°,∴∠AOD=∠BOC=45°,∵∠BOE=90°,∴∠AOE=90°,∴∠DOE=∠AOE+∠AOD=90°+45°=135°,∠BOD=180°﹣∠AOD=180°﹣45°=135°,∵FO平分∠BOD,∴∠BOF=∠BOD=×135°=67.5°,∴∠COF=∠BOC+∠BOF=45°+67.5°=112.5°;(2)∠EOF=∠EOB+∠BOF=90°+67.5°=157.5°,根据题意得:4t﹣2t=157.5﹣90,解得:t=33.75,答:t的值为33.75s.【点评】本题考查了角的计算,角平分线的定义,解题的关键是根据题中等量关系列出方程.二.二次函数综合题(共1小题)2.(2018秋•沙坪坝区校级期中)在平面直角坐标系中,二次函数y=ax2+bx﹣8的图象与x轴交于A、B两点,与y轴交于点C,直线y=kx+(k≠0)经过点A,与抛物线交于另一点R,已知OC=2OA,OB=3OA.(1)求抛物线与直线的解析式;(2)如图1,若点P是x轴下方抛物线上一点,过点P作PH⊥AR于点H,过点P作PQ∥x轴交抛物线于点Q,过点P作PH′⊥x轴于点H′,K为直线PH′上一点,且PK=2PQ,点I为第四象限内一点,且在直线PQ上方,连接IP、IQ、IK,记l=PQ,m=IP+IQ+IK,当l取得最大值时,求出点P的坐标,并求出此时m的最小值.(3)如图2,将点A沿直线AR方向平移13个长度单位到点M,过点M作MN⊥x轴,交抛物线于点N,动点D为x轴上一点,连接MD、DN,再将△MDN沿直线MD翻折为△MDN′(点M、N、D、N′在同一平面内),连接AN、AN′、NN′,当△ANN′为等腰三角形时,请直接写出点D的坐标.【分析】(1)令二次函数x=0,解出C点坐标(0,﹣8),根据已知条件可知点A(﹣4,0)点B(12,0).代入解析式从而求得抛物线和直线解析式.(2)设点P坐标的横坐标为p,求出对称轴为直线x=4,根据对称性求出点Q的坐标,从而求出PQ的长度,延长PK交直线AR与点M,利用一次函数解析式求出点M的坐标,PM线段长可表示,利用△PHM∽△AEO,求出PH的长度,则I可用点p的代数式表示,从而求得最大值,点P坐标也可求出,由m=IP+IQ+IK求其最小值可知,点I为△PQK的“费马点”.(3)由点A平移13个单位可知点M的坐标,则点N的坐标可求为(8,﹣8)可求AN的长度,MN的长度为13,因为翻折可知MN′的长度也为13,则N′在以点M为圆心13个单位长度为半径的圆上运动,再利用等腰三角形求出点D的坐标.【解答】解(1)∵y=ax2+bx﹣8与y轴的交点为C,令x=0,y=﹣8∴点C(0,﹣8)∴OC=8∵OC=2OA,OB=3OA∴OA=4,OB=12∴A(﹣4,0)B(12,0)将点A代入直线解析式可得0=﹣4k+解得k=∴y=x+将点A和点B代入抛物线中解得a=,b=﹣∴y=x2﹣x﹣8(2)设点P的坐标为(p,p2﹣p﹣8)﹣=4∴抛物线的对称轴为直线x=4∴点Q(8﹣p,)∴PQ=2p﹣8∵PK=2PQ∴PK=4p﹣16如图1所示,延长PK交直线AR于点M,则M(p,)∴PM=﹣()=∵∠PHM=∠MH′A,∠HMP=∠AMH′∴∠HPM=∠MAH′∵直线解析式为y=,令x=0,y=.∴OE=∵OA=4根据勾股定理得∴AE=∴cos∠EAO==∴cos∠HPM===∴PH=∵I=PH﹣PQ∴I=()﹣(2p﹣8)=﹣(p﹣5)2+85∴当p=5时,I取最大值此时点P(5,)∴PQ=2,PK=如图2所示,连接QK,以PQ为边向下做等边三角形PQD,连接KD,在KD取I,使∠PID=60°,以PI为边做等边三角形IPF,连接IQ∵IP=PF,PQ=PD,∠IPQ=∠FPD∴△IPQ≌△FPD∴DF=IQ∴IP+IQ+IK=IF+FD+IK=DK,此时m最小过点D作DN垂直于KP∵∠KPD=∠KPQ+∠QPD=150°∴∠PDN=30°∵DP=PQ=2∴DN=1,根据勾股定理得PN=在△KDN中,KN=5,DN=1,根据勾股定理得KD=2∴m的最小值为2(3)设NM与x轴交于点J∵AM=13,cos∠MAJ=∴AJ=12,根据勾股定理得MJ=5∵OA=4,∴OJ=8∴M(8,5)当x=8时,代入抛物线中,可得y=﹣8∴N(8,﹣8),MN=13在△AJN中,根据勾股定理得AN=4∵点D为x轴上的动点,根据翻折,MN′=13,所以点N′在以M为圆心,13个单位长度为半径的圆上运动,如图3所示①当N′落在AN的垂直平分线上时tan∠MNA==∴tan∠MGJ=,∵MJ=5∴JG=,根据勾股定理得MG=∵MD1为∠GMJ的角平分线∴∴D1J=∴D1(,0)∵MD4也为角平分线∴∠D1MD4=90°根据射影定理得MJ2=JD1•JD4∴JD4=∴D4(,0)②当AN=AN′时D2与点A重合∴D2(﹣4,0)∵MD3为角平分线∴∴JD3=∴D3(,0)综上所述D1(,0),D2(﹣4,0),D3(,0),D4(,0).【点评】本题(1)考查了二次函数及一次函数的待定系数法,(2)考查了二次函数的最值问题及费马点定理,(3)考查了等腰三角形及角平分线分线段成比例及射影定理.此题综合性较强.三.全等三角形的判定与性质(共1小题)3.(2022秋•静安区校级期中)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费马点.若点M为△ABC的费马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点.试说明这种作法的依据.【分析】(1)结合等边三角形的性质,根据SAS可证△AMB≌△ENB;(2)连接MN,由(1)的结论证明△BMN为等边三角形,所以BM=MN,即AM+BM+CM=EN+MN+CM,所以当E、N、M、C四点共线时,AM+BM+CM的值最小,从而可求此时∠AMB、∠BMC、∠CMA的度数;(3)根据(2)中费马点的定义,又△ABC的费马点在线段EC上,同理也在线段BF上.因此线段EC与BF的交点即为△ABC的费马点.【解答】解:(1)证明:∵△ABE为等边三角形,∴AB=BE,∠ABE=60°.而∠MBN=60°,∴∠ABM=∠EBN.在△AMB与△ENB中,∵,∴△AMB≌△ENB(SAS).(2)连接MN.由(1)知,AM=EN.∵∠MBN=60°,BM=BN,∴△BMN为等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.∴当E、N、M、C四点共线时,AM+BM+CM的值最小.此时,∠BMC=180°﹣∠NMB=120°;∠AMB=∠ENB=180°﹣∠BNM=120°;∠AMC=360°﹣∠BMC﹣∠AMB=120°.(3)由(2)知,△ABC的费马点在线段EC上,同理也在线段BF上.因此线段EC与BF的交点即为△ABC的费马点.【点评】本题考查全等三角形的判定与性质以及等边三角形的性质,是一道综合性的题目难度很大.四.角平分线的性质(共1小题)4.(2020•荷塘区模拟)在△ABC中,若其内部的点P满足∠APB=∠BPC=∠CPA=120°,则称P为△ABC的费马点.如图所示,在△ABC中,已知∠BAC=45°,设P为△ABC的费马点,且满足∠PBA=45°,PA=4,则△PAC的面积为4.【分析】如图,延长BP交AC于D,先说明△ABD是等腰直角三角形,△ADP是30°的直角三角形,可得PD和AD的长,根据费马点的定义可得∠APC=120°,从而可知△PDC也是30°的直角三角形,可得CD的长,根据三角形的面积公式可得结论.【解答】解:如图,延长BP交AC于D,∵∠BAC=∠PBA=45°,∴∠ADB=90°,AD=BD,∵P为△ABC的费马点,∴∠APB=∠CPA=120°,∴∠BAP=180°﹣120°﹣45°=15°,∴∠PAC=45°﹣15°=30°,∴∠APD=60°,Rt△PAD中,∵PA=4,∴PD=2,AD=2,∵∠APC=120°,∴∠CPD=120°﹣60°=60°,Rt△PDC中,∠PCD=30°,∴CD=2,∴AC=AD+CD=2+2=4,∴△PAC的面积为==4.故答案为:4.【点评】本题考查了费马点的定义,三角形的面积,等腰直角三角形的性质和判定,含30°角的直角三角形的性质等知识,正确作出辅助线构建等腰直角三角形是本题的关键.五.等腰三角形的判定与性质(共1小题)5.(2017秋•义乌市月考)已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermatpoint).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF=()A.2 B.1+ C.6 D.3【分析】根据题意首先画出图形,过点D作DM⊥EF于点M,在△BDE内部过E、F分别作∠MEP=∠MFP=30°,则∠EPF=∠FPD=∠EPD=120°,点P就是费马点,求出PE,PF,DP的长即可解决问题;【解答】解:如图:过点D作DM⊥EF于点M,在△BDE内部过E、F分别作∠MEP=∠MFP=30°,则∠EPF=∠FPD=∠EPD=120°,点P就是费马点,在等腰Rt△DEF中,DE=DF=,DM⊥EF,∴EF=DE=2∴EM=DM=1,故cos30°=,解得:PE=,则PM=,故DP=1﹣,同法可得PF=则PD+PE+PF=2×+1﹣=+1.故选:B.【点评】此题主要考查了解直角三角,正确画出图形进而求出PE的长是解题关键.六.等边三角形的性质(共1小题)6.(2014秋•厦门期中)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.如图(2),在锐角△ABC外侧作等边△ACB′连接BB′.求证:BB′过△ABC的费马点P,且BB′=PA+PB+PC.【分析】根据费马点的定义,在BB′上取点P,使∠BPC=120°,再在PB′上取PE=PC,然后连接CE,根据等边三角形的判定可以证明△PCE是等边三角形,从而得到PC=CE,∠PCE=60°,根据角的关系可以推出∠PCA=∠ECB′,再利用边角边证明ACP与△B′CE全等,根据全等三角形对应边相等可得PA=EB′,∠APC=∠CEB′=120°,从而可得点P为△ABC的费马点,并且BB′=PA+PB+PC.【解答】证明:在BB′上取点P,使∠BPC=120°,连接AP,再在PB′上截取PE=PC,连接CE,∵∠BPC=120°,∴∠EPC=60°,∴△PCE为正三角形,∴PC=CE,∠PCE=60°,∠CEB′=120°,∵△ACB′为正三角形,∴AC=B′C,∠ACB′=60°,∴∠PCA+∠ACE=∠ACE+∠ECB′=60°,∴∠PCA=∠ECB′,∴△ACP≌△B′CE,∴∠APC=∠B′EC=120°,PA=EB′,∴∠APB=∠APC=∠BPC=120°,∴P为△ABC的费马点,∴BB′过△ABC的费马点P,且BB′=EB′+PB+PE=PA+PB+PC.【点评】本题考查了等边三角形的性质与判定,全等三角形的判定与性质,根据新定义,作出辅助线构造出全等三角形是解题的关键.七.等腰直角三角形(共1小题)7.(2020•崇州市模拟)如果点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点.已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF=+1.【分析】过点D作DM⊥EF于点M,在△BDE内部过E、F分别作∠MEP=∠MFP=30°,则∠EPF=∠FPD=∠EPD=120°,点P就是费马点,求出PE,PF,DP的长即可解决问题;【解答】解:如图:过点D作DM⊥EF于点M,在△BDE内部过E、F分别作∠MEP=∠MFP=30°,则∠EPF=∠FPD=∠EPD=120°,点P就是费马点,在等腰Rt△DEF中,DE=DF=,DM⊥EF,∴EF=DE=2∴EM=DM=1,故cos30°=,解得:PE=,则PM=,故DP=1﹣,同法可得PF=则PD+PE+PF=2×+1﹣=+1.故答案为+1.【点评】此题主要考查了解直角三角,正确画出图形进而求出PE的长是解题关键.八.三角形综合题(共2小题)8.(2023春•渠县校级期末)如图1,D、E、F是等边三角形ABC中不共线三点,连接AD、BE、CF,三条线段两两分别相交于D、E、F.已知AF=BD,∠EDF=60°.(1)证明:EF=DF;(2)如图2,点M是ED上一点,连接CM,以CM为边向右作△CMG,连接EG.若EG=EC+EM,CM=GM,∠GMC=∠GEC,证明:CG=CM.(3)如图3,在(2)的条件下,当点M与点D重合时,若CD⊥AD,GD=4,请问在△ACD内部是否存在点P使得P到△ACD三个顶点距离之和最小,若存在请直接写出距离之和的最小值;若不存在,试说明理由.【分析】(1)可先推出∠CAF=∠ABD,再证△ACF≌△BAD,即可得出结论;(2)在EF上截取EN=EM,连接MN,可推出△EMN是等边三角形,可证△NCM≌△EGM,然后推出△CMG是等边三角形,从而问题得证;(3)先求得AD=,将△DPC绕点D顺时针旋转60°至△DQG,连接AG,可得△PDQ是等边三角形,于是AP+PD+CP=AP+PQ+QG,故当A、P、Q、G共线时,AP+PD+CP最小=AG,最后解斜三角形ADG,从而求得.【解答】(1)证明:如图1,∵△ABC是等边三角形,∴AC=AB,∠ACB=60°,∴∠CAF+∠DAB=60°,∵∠EDF=60°,∴∠DAB+∠ABD=60°,∴∠CAF=∠ABD,∵AF=BD,∴△ACF≌△BAD(SAS),∴EF=DF;(2)证明:如图2,由(1)知,EF=DF,∠EDF=60°,∴△DEF是等边三角形,∴∠DEF=60°,在EF上截取EN=EM,连接MN,∴CN=CE+EN=CE+EM=EG,∴△EMN是等边三角形,∴∠CNM=60°,∵∠GMC=∠GEC,∠α=∠β,∴∠NCM=∠EGM,∵CM=GM,∴△NCM≌△EGM(SAS),∴∠MEG=∠CNM=60°,∴∠CEG=180°﹣∠MEG﹣∠FED=60°,∴∠GME=∠GEC=60°,∵CM=GM,∴△CMG是等边三角形,∴CG=CM;(3)解:如图3,由(1)(2)知,△DEF和△CDG是等边三角形,∴∠CFD=60°,CD=GD=4,∵CD⊥AD,∴∠CDF=90°,∴AD=CF==,将△DPC绕点D顺时针旋转60°至△DQG,连接AG,∴AD=DQ,CP=QG,∴△PDQ是等边三角形,∴PD=PQ,∴AP+PD+CP=AP+PQ+QG,∴当A、P、Q、G共线时,AP+PD+CP最小=AG,作GH⊥AD于H,在Rt△DGH中,GH=DG=2,DH=DG=2,∴AH=AD+DH=+2=,∴AG===,∴AP+PD+CP的最小值是.【点评】本题考查了等边三角形的性质,全等三角形的判定和性质,旋转的性质和应用等知识,解决问题的关键是掌握“费马点”模型及“截长补短”等题型.9.(2017秋•邗江区期末)背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图①,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC=∠CPA=120°,此时,PA+PB+PC的值最小.解决问题:(1)如图②,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB=150°;基本运用:(2)请你利用第(1)题的解答思想方法,解答下面问题:如图③,△ABC中,∠CAB=90°,AB=AC,E,F为BC上的点,且∠EAF=45°,判断BE,EF,FC之间的数量关系并证明;能力提升:(3)如图④,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为Rt△ABC的费马点,连接AP,BP,CP,求PA+PB+PC的值.【分析】(1)根据旋转变换前后的两个三角形全等,全等三角形对应边相等,全等三角形对应角相等以及等边三角形的判定和勾股定理逆定理解答;(2)把△ABE绕点A逆时针旋转90°得到△ACE′,根据旋转的性质可得AE′=AE,CE′=CE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,再求出∠E′AF=45°,从而得到∠EAF=∠E′AF,然后利用“边角边”证明△EAF和△E′AF全等,根据全等三角形对应边相等可得E′F=EF,再利用勾股定理列式即可得证.(3)将△APB绕点B顺时针旋转60°至△A′P′B处,连接PP′,根据直角三角形30°角所对的直角边等于斜边的一半求出AB=2AC,即A′B的长,再根据旋转的性质求出△BPP′是等边三角形,根据等边三角形的三条边都相等可得BP=PP′,等边三角形三个角都是60°求出∠BPP′=∠BP′P=60°,然后求出C、P、A′、P′四点共线,再利用勾股定理列式求出A′C,从而得到PA+PB+PC=A′C.【解答】解:(1)∵△ACP′≌△ABP,∴AP′=AP=3、CP′=BP=4、∠AP′C=∠APB,由题意知旋转角∠PAP′=60°,∴△APP′为等边三角形,PP′=AP=3,∠AP′P=60°,易证△PP′C为直角三角形,且∠PP′C=90°,∴∠APB=∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故答案为:150°;(2)EF2=BE2+FC2,理由如下:如图2,把△ABE绕点A逆时针旋转90°得到△ACE′,由旋转的性质得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,∵∠EAF=45°,∴∠E′AF=∠CAE′+∠CAF=∠BAE+∠CAF=∠BAC﹣∠EAF=90°﹣45°=45°,∴∠EAF=∠E′AF,在△EAF和△E′AF中,,∴△EAF≌△E′AF(SAS),∴E′F=EF,∵∠CAB=90°,AB=AC,∴∠B=∠ACB=45°,∴∠E′CF=45°+45°=90°,由勾股定理得,E′F2=CE′2+FC2,即EF2=BE2+FC2.(3)如图④,将△APB绕点B顺时针旋转60°至△A′P′B处,连接PP′,∵在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,∴AB=2,∴BC==,∵△APB绕点B顺时针方向旋转60°,∴△A′P′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∴AB=2AC=2,∵△APB绕点B顺时针方向旋转60°,得到△A′P′B,∴A′B=AB=2,BP=BP′,A′P′=AP,∴△BPP′是等边三角形,∴BP=PP′,∠BPP′=∠BP′P=60°,∵∠APC=∠CPB=∠BPA=120°,∴∠CPB+∠BPP′=∠BP′A′+∠BP′P=120°+60°=180°,∴C、P、A′、P′四点共线,在Rt△A′BC中,A′C===,∴PA+PB+PC=A′P′+PP′+PC=A′C=.【点评】本题考查三角形综合题,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是学会利用旋转变换添加辅助线,构造全等三角形解决问题,属于中考压轴题.九.正方形的性质(共1小题)10.(2020•碑林区校级模拟)如图,在边长为6的正方形ABCD中,点M,N分别为AB、BC上的动点,且始终保持BM=CN.连接MN,以MN为斜边在矩形内作等腰Rt△MNQ,若在正方形内还存在一点P,则点P到点A、点D、点Q的距离之和的最小值为3+3.【分析】根据勾股定理得到关于x的一元二次方程,根据函数的性质求得当BM=BN=3时,Q点到AD距离最近,此时Q点是AC和BD的交点,过点Q作QM⊥AD于点M′,在△ADQ内部过A、D分别作∠M′DP=∠M′AP=30°,则∠APD=∠APQ=∠DPQ=120°,点P就是费马点,此时PA+PD+PQ最小,根据特殊直角三角形才求出AQ,PA,PD,PQ的长,进而得出答案.【解答】解:设BM=x,则BN=6﹣x,∵MN2=BM2+BN2,∴MN2=x2+(6﹣x)2=2(x﹣3)2+18,∴当x=3时,MN最小,此时Q点离AD最近,∵BM=BN=3,∴Q点是AC和BD的交点,∴AQ=DQ=AD=3,过点Q作QM′⊥AD于点M′,在△ADQ内部过A、D分别作∠M′DP=∠M′AP=30°,则∠APD=∠APQ=∠DPQ=120°,点P就是费马点,此时PA+PD+PQ最小,在等腰Rt△AQD中,AQ=DQ=3,QM′⊥AD,∴AM=QM′=AQ=3,故cos30°=,解得:PA=2,则PM′=,故QP=3﹣,同法可得PD=2,则PA+PD+PQ=2×+3﹣=3+3,∴点P到点A、点D、点Q的距离之和的最小值为3+3,故答案为3+3.【点评】此题主要考查了正方形的性质,等腰直角三角形的性质,解直角三角,正确画出图形进而求出PA的长是解题关键.一十.四边形综合题(共1小题)11.(2023•桐城市校级开学)定义:在一个等腰三角形底边的高线上所有点中,到三角形三个顶点距离之和最小的点叫做这个等腰三角形的“近点”,“近点”到三个顶点距离之和叫做这个等腰三角形的“最近值”.【基础巩固】(1)如图1,在等腰Rt△ABC中,∠BAC=90°,AD为BC边上的高,已知AD上一点E满足∠DEC=60°,AC=,求AE+BE+CE=12+;【尝试应用】(2)如图2,等边三角形ABC边长为,E为高线AD上的点,将三角形AEC绕点A逆时针旋转60°得到三角形AFG,连接EF,请你在此基础上继续探究求出等边三角形ABC的“最近值”;【拓展提高】(3)如图3,在菱形ABCD中,过AB的中点E作AB垂线交CD的延长线于点F,连接AC、DB,已知∠BDA=75°,AB=6,求三角形AFB“最近值”的平方.【分析】(1)△CDE为含30°角直角三角形,可求出DE、CE的长度,进而得出结果.(2)△AEF为等边三角形,可得AE+BE+CE=EF+BE+GF,故当B、E、F、G四点共线时,EF+BE+GF最小,进而可得∠AEB=∠AEC=∠BEC=120°,即可求出结果.(3)作DM⊥AB于点M,可知EF=DM=AB,进而可推出△ABF为等腰直角三角形,结合(2)中的结论,当点P满足:∠APF=∠BPF=∠APB=120°时,PA+PB+PF最小,进而结合(1)中方法求出结果.【解答】解:(1)∵AB=AC,∠BAC=90°,AC=,∴BD=CD=AD=,∵∠DEC=60°,∴DE==4,∴AE=AD﹣DE=,CE=BE=2DE=8,∴AE+BE+CE=+8×2=12+;故答案为:12+;(2)由题意可得:AE=AF,∠EAF=60°,∴△EAF为等边三角形,∴AE=EF=AF,∴AE+BE+CE=EF+BE+GF,∵B、G两点均为定点,∴当B、E、F、G四点共线时,EF+BE+GF最小,∴∠AEB=120°,∠AEC=∠AFG=120°,∴∠BEC=120°,∴此时E点为等边△ABC的中心,∴AE+BE+CE=3AE==12,故等边三角形ABC的“最近值”为12;(3)如图,过点D作DM⊥AB于点M,∵∠BDA=75°,AB=AD,∴∠DAB=30°,∴2DM=AD=AB,∵AB∥CD,∴EF=DM,∴2EF=AB,∴AE=BE=EF=3,∴△AEF与△BEF均为等腰直角三角形,∴△ABF为等腰直角三角形,设P为EF上一点,由(2)得:∠APF=∠BPF=∠APB=120°时,PA+PB+PF最小,此时:EP==,∴AP=BP=2EP=,FP=EF﹣EP=3﹣,∴AP+BP+FP==3+,∴(AP+BP+FP)2==,∴三角形AFB“最近值”的平方为.【点评】本题考查三角形与四边形综合问题,掌握费马点模型可帮助快速解题.一十一.轴对称最短路线问题(共2小题)12.(2021•丹东)已知:到三角形3个顶点距离之和最小的点称为该三角形的费马点.如果△ABC是锐角(或直角)三角形,则其费马点P是三角形内一点,且满足∠APB=∠BPC=∠CPA=120°.(例如:等边三角形的费马点是其三条高的交点).若AB=AC=,BC=2,P为△ABC的费马点,则PA+PB+PC=5;若AB=2,BC=2,AC=4,P为△ABC的费马点,则PA+PB+PC=2.【分析】①作出图形,过B,C分别作∠DBP=∠DCP=30°,勾股定理解直角三角形即可;②作出图形,将△APC绕点A逆时针旋转60°,P为△ABC的费马点则B,P,P',C'四点共线,即PA+PB+PC=BC',再用勾股定理求得即可.【解答】解:如图,过A作AD⊥BC,垂足为D,过B,C分别作∠DBP=∠DCP=30°,则PB=PC,P为△ABC的费马点,∵AB=AC=,BC=2,∴,∴,∴PD=1,∴,∴,∴PA+PB+PC=5;②如图:∵AB=2,BC=2,AC=4,∴AB2+BC2=16,AC2=16,∴AB2+BC2=AC2,∠ABC=90°,∵,∴∠BAC=30°,将△APC绕点A逆时针旋转60°,由旋转可得:△APC≌△AP'C',∴AP'=AP,PC=P'C',AC=AC',∠CAC'=∠PAP'=60°,∴△APP′是等边三角形,∴∠BAC'=90°,∵P为△ABC的费马点,即B,P,P',C'四点共线时候,PA+PB+PC=BC',∴PA+PB+PC=BP+PP'+P'C'=BC'==,故答案为:5,.【点评】本题考查了勾股定理,旋转的性质,锐角三角函数,等腰三角形性质,作出旋转的图形是解题的关键.本题旋转△PAB,△PBC也可,但必须绕顶点旋转.13.(2019秋•开福区校级月考)法国数学家费马提出:在△ABC内存在一点P,使它到三角形顶点的距离之和最小.人们称这个点为费马点,此时PA+PB+PC的值为费马距离.经研究发现:在锐角△ABC中,费马点P满足∠APB=∠BPC=∠CPA=120°,如图,点P为锐角△ABC的费马点,且PA=3,PC=4,∠ABC=60°,则费马距离为7+2.【分析】根据相似三角形的判定和性质,即可求解.【解答】解:如图:∵∠APB=∠BPC=∠CPA=120,∠ABC=60°,∴∠1+∠3=60°,∠1+∠2=60°,∠2+∠4=60°,∴∠1=∠4,∠2=∠3,∴△BPC∽△APB∴=,即PB2=12∴PB=2.∴PA+PB+PC=7+2故答案为:7+2.【点评】本题考查了轴对称﹣最短路线问题,解决本题的关键是利用相似三角形的判定和性质.一十二.旋转的性质(共4小题)14.(2023春•城关区校级期中)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.40° B.30° C.50° D.65°【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选:C.【点评】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.(多选)15.(2023春•临朐县期中)如图,将一副三角板按如图方式叠放在一起,保持三角板ABC不动,将三角板DCE的CE边与CA边重合,然后绕点C按顺时针或逆时针方向任意转动一个角度.当这两块三角板各有一条边互相平行时,∠ACE的度数可能是()A.45° B.90° C.120° D.135°【分析】本题学生需要分情况讨论,分别画出图形,即可求值.【解答】解:(1)如图:当DE∥AB时,∠ACE=60°﹣45°=15°,(2)如图:当CD∥AB时,∠ACE=90°﹣(90°﹣30°)=30°,(3)如图:当DE∥AC时,∠ACE=90°﹣45°=45°,(4)如图:当CE∥AB时,∠ACE=90°+30°=120°,(5)如图:当CE∥AB时,∠ACE=∠A=60°,(6)如图:当DE∥AB时,∠ACE=180°﹣15°=165°,(7)如图:当CD∥AB时,∠ACE=90°+60°=150°,(8)如图:当DE∥AC时,∠ACE=180°﹣45°=135°.故选:ACD.【点评】本题主要考查了旋转的知识和平行线的知识,难度较大,需要分情况画出图形,考虑全面比较困难.16.(2022秋•大冶市期末)如图,D是等边三角形ABC外一点,连接AD,BD,CD,已知BD=8,CD=3,则当线段AD的长度最小时,①∠BDC=60°;②AD的最小值是5.【分析】以BD为边向外作等边三角形BDE,连接CE,判定△ABD≌△CBE,即可得出CE=AD,再根据C,D,E三点共线时,CE有最小值,即可得到AD的最小值为5,此时∠BDC=60°.【解答】解:如图所示,以BD为边向外作等边三角形BDE,连接CE,∵△BDE,△ABC均为等边三角形,∴BE=BD,AB=BC,∠ABC=∠DBE=60°,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴CE=AD,∵BE=BD=DE=8,CD=3,∴当C,D,E三点共线时,CE有最小值,∴CE=DE﹣CD=8﹣3=5,∴AD的最小值为5,此时∠BDC=60°.故答案为:①60°;②5.【点评】本题主要考查了旋转的性质以及等边三角形的性质以及全等三角形的判定与性质的运用,解决问题的关键是以BD为边向外作等边三角形BDE,依据全等三角形的性质得出结论.17.(2022秋•洪山区校级期中)如图,以等边△ABC的一边BC为底边作等腰△BCD,已知AB=3,,且∠BDC=120°,在△BCD内有一动点P,则PB+PC+PD的最小值为.【分析】将△PBC绕点B逆时针旋转60°后,得到△P′BA,连接PP′、AD,根据旋转性质可得∠PBP′=60°,PB=P′B,PC=P′A,以此得到PB=PP′,根据两点之间线段最短得PB+PC+PD=PP′+P′A+PD≥AD,根据等边三角形和等腰三角形的性质得到∠ABD=∠ABC+∠CBD=90°,再根据勾股定理即可求解.【解答】解:如图,将△PBC绕点B逆时针旋转60°后,得到△P′BA,连接PP′、AD,根据旋转的性质得,∠PBP′=60°,PB=P′B,PC=P′A,∴△PBP′为等边三角形,∴PB=PP′,∴PB+PC+PD=PP′+P′A+PD,∵PP′+P′A+PD≥AD,∴当A、P′、P、D四点共线时,PB+PC+PD有最小值,∵△ABC为等边三角形,∴∠ABC=60°,∵△BCD为等腰三角形,∠BDC=120°,∴∠CBD=30°,∴∠ABD=∠ABC+∠CBD=90°,在Rt△ABD中,AB=3,BD=,∠ABD=90°,由勾股定理得AD==.∴PB+PC+PD的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 虚拟现实会展用户体验-洞察分析
- 用户行为分析在插件开发中的应用-洞察分析
- 第08讲 科学记数法、近似数(人教版)(解析版)
- 焰火污染物排放预测模型-洞察分析
- 稳定区域划分与优化-洞察分析
- 勤俭节约之星事迹简介(5篇)
- 新型城镇化人口管理-洞察分析
- 药物代谢与靶向治疗-洞察分析
- 网络切片安全威胁预测模型-洞察分析
- 体育法与体育经济分析-洞察分析
- 热水袋烫伤RCA分析2022
- 思想道德与法治(海南大学)智慧树知到期末考试答案2024年
- 卫生间设计方案现代
- 文创产品设计学生总结
- 竣工结算审计服务 投标方案(技术方案)
- 南京电动自行车火灾事故案例过程与思考
- 2024年宁夏石嘴山市星瀚市政产业集团有限公司招聘笔试参考题库含答案解析
- 中学学科基地常规管理制度(4篇)
- 《唐雎不辱使命》教案【3篇】
- 养殖水环境化学全套教学课件
- 血液系统罕见病
评论
0/150
提交评论