版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(培优特训)专项1.2等边三角形综合应用1.(2022•昭化区模拟)如图,在△ABC中,∠C=90°,∠CAB=30°,AC=6,D为AB边上一动点(不与点A重合),△AED为等边三角形,过点D作DE的垂线,F为垂线上任意一点,连接EF,G为EF的中点,连接BG,则BG的最小值是()A.2 B.6 C.3 D.9【答案】B【解答】解:如图,连接DG,AG,设AG交DE于点H,∵DE⊥DF,G为EF的中点,∴DG=GE,∴点G在线段DE的垂直平分线上,∵△AED为等边三角形,∴AD=AE,∴点A在线段DE的垂直平分线上,∴AG为线段DE的垂直平分线,∴AG⊥DE,∠DAG=∠DAE=30°,∴点G在射线AH上,当BG⊥AH时,BG的值最小,如图所示,设点G'为垂足,∵∠ACB=90°,∠CAB=30°,∴∠ACB=∠AG'B,∠CAB=∠BAG',则在△BAC和△BAG'中,,∴△BAC≌△BAG'(AAS).∴BG'=BC,在Rt△ABC中,∠CAB=30°,AC=6,∴AB=2BC,∵AB2=BC2+AC2,∴(2BC)2=BC2+(6)2,解得:BC=6,∴BG'=6.故选:B.2.(2022秋•槐荫区校级期末)如图,在直角坐标系xOy中,直线MN分别与x轴,y轴交于点M,N,且OM=4,∠OMN=30°,等边△AOB的顶点A,B分别在线段MN,OM上,点A的坐标为()A.(1,) B.(1,) C.(,1) D.(,)【答案】A【解答】解:∵直线MN分别与x轴正半轴、y轴正半轴交于点M、N,OM=4,∠OMN=30°,∴∠ONM=60°,∵△AOB为等边三角形,∴∠AOB=60°,∠AMO=30°,∴∠OAM=90°,∴OA⊥MN,即△OAM为直角三角形,∴OA=OM=×4=2,过点A作AC⊥OB于点C,∴OC=OA=1,∴AC=,∴点A的坐标为(1,).故选:A.3.(2020秋•承德县期末)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则B6B7的边长为()A.6 B.12 C.32 D.64【答案】C【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A7B7=26B1A2=26=64,B6A7==32,△B7B6A7是直角三角形,∠B7B6A7=90°,∴B6B7===32.故选:C.4.(2021秋•华容县期末)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③OP=OQ;④△CPQ为等边三角形;⑤∠AOB=60°.其中正确的有.(注:把你认为正确的答案序号都写上)【答案】①②④⑤【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,AC=BC,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,结论①正确.∵△ACD≌△BCE,∴∠CAD=∠CBE,又∵∠ACB=∠DCE=60°,∴∠BCD=180°﹣60°﹣60°=60°,∴∠ACP=∠BCQ=60°,在△ACP和△BCQ中,∠ACP=∠BCQ,∠CAP=∠CBQ,AC=BC,∴△ACP≌△BCQ(AAS),∴AP=BQ,CP=CQ,又∵∠PCQ=60°,∴△PCQ为等边三角形,结论④正确;∴∠PQC=∠DCE=60°,∴PQ∥AE,结论②正确.∵△ACD≌△BCE,∴∠ADC=∠AEO,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,∴结论⑤正确.没有条件证出OP=OQ,③错误;综上,可得正确的结论有4个:①②④⑤.故答案为:①②④⑤.5.(2021秋•滑县期末)如图,已知等边三角形ABC的边长为3,过AB边上一点P作PE⊥AC于点E,Q为BC延长线上一点,取PA=CQ,连接PQ,交AC于M,则EM的长为.【答案】【解答】解:过P作PF∥BC交AC于F,如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFM=∠QCM,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ,在△PFM和△QCM中,,∴△PFM≌△QCM(AAS),∴FM=CM,∵AE=EF,∴EF+FM=AE+CM,∴AE+CM=ME=AC,∵AC=3,∴ME=,故答案为:.6.(2021春•建平县期末)如图(1),△AB1C1是边长为1的等边三角形;如图(2),取AB1的中点C2,画等边三角形AB2C2,连接B1B2;如图(3),取AB2的中点C3,画等边三角形AB3C3,连接B2B3;如图(4),取AB3的中点C4,画等边三角形AB4C4,连接B3B4,则B3B4的长为.【答案】【解答】解:如图(2),过点C2作C2D⊥B1B2于点D,∵△AB1C1是边长为1的等边三角形,C2是AB1的中点,∴B1C2=B2C2=.∵△AB2C2是等边三角形,∴∠B1C2B2=120°,B1C2=B2C2,∴∠DB1C1=∠DB2C2=30°,∴B1D==,∴B1B2=2B1D=,同理可得,B2B3=,B3B4=.故答案为:.7.(2020春•新都区期末)边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点顺次连接,又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图)…,按此方式依次操作,则第7个正六边形的边长是.【答案】×()6a【解答】解:如图1,连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中,∵,∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,如图2,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是()3a,第四个正六边形的边长是×()3a;第五个等边三角形的边长是()4a,第五个正六边形的边长是×()4a;…第n个正六边形的边长是×()n﹣1a,∴第七个正六边形的边长是×()6a.故答案为:×()6a.8.(2022秋•铁东区校级期末)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.【解答】(1)证明:∵△ABC为等边三角形,∴AB=CA=BC,∠BAE=∠ACD=60°;在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴AD=BE;(2)解:∵△ABE≌△CAD,∴∠CAD=∠ABE,∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,∴∠PBQ=90°﹣60°=30°,∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6,又∵PE=1,∴AD=BE=BP+PE=6+1=7.9.(2021秋•东至县期末)如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.【解答】证明:(1)∵△BOC≌△ADC,∴OC=DC,∵∠OCD=60°,∴△OCD是等边三角形.解:(2)△AOD是直角三角形.理由如下:∵△OCD是等边三角形,∴∠ODC=60°,∵△BOC≌△ADC,α=150°,∴∠ADC=∠BOC=α=150°,∴∠ADO=∠ADC﹣∠ODC=150°﹣60°=90°,∴△AOD是直角三角形.(3)∵△OCD是等边三角形,∴∠COD=∠ODC=60°.∵∠AOB=110°,∠ADC=∠BOC=α,∴∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣110°﹣α﹣60°=190°﹣α,∠ADO=∠ADC﹣∠ODC=α﹣60°,∴∠OAD=180°﹣∠AOD﹣∠ADO=180°﹣(190°﹣α)﹣(α﹣60°)=50°.①当∠AOD=∠ADO时,190°﹣α=α﹣60°,∴α=125°.②当∠AOD=∠OAD时,190°﹣α=50°,∴α=140°.③当∠ADO=∠OAD时,α﹣60°=50°,∴α=110°.综上所述:当α=110°或125°或140°时,△AOD是等腰三角形.10.(2021秋•韶关期末)已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.【解答】解:(1)∵△ABC、△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE,∴AD=BE.(2)解:∵△ACD≌△BCE,∴∠ADC=∠BEC,∵等边三角形DCE,∴∠CED=∠CDE=60°,∴∠ADE+∠BED=∠ADC+∠CDE+∠BED,=∠ADC+60°+∠BED,=∠CED+60°,=60°+60°,=120°,∴∠DOE=180°﹣(∠ADE+∠BED)=60°,答:∠DOE的度数是60°.(3)证明:∵△ACD≌△BCE,∴∠CAD=∠CBE,AD=BE,AC=BC又∵点M、N分别是线段AD、BE的中点,∴AM=AD,BN=BE,∴AM=BN,在△ACM和△BCN中,∴△ACM≌△BCN,∴CM=CN,∠ACM=∠BCN,又∠ACB=60°,∴∠ACM+∠MCB=60°,∴∠BCN+∠MCB=60°,∴∠MCN=60°,∴△MNC是等边三角形.11.(2022春•建平县期末)如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC会全等吗?请说说你的理由;(2)试说明AE∥BC的理由;(3)如图(2),将(1)动点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.【解答】解:(1)△DBC和△EAC会全等证明:∵∠ACB=60°,∠DCE=60°∴∠BCD=60°﹣∠ACD,∠ACE=60°﹣∠ACD∴∠BCD=∠ACE在△DBC和△EAC中,∵,∴△DBC≌△EAC(SAS),(2)∵△DBC≌△EAC∴∠EAC=∠B=60°又∠ACB=60°∴∠EAC=∠ACB∴AE∥BC(3)结论:AE∥BC理由:∵△ABC、△EDC为等边三角形∴BC=AC,DC=CE,∠BCA=∠DCE=60°∠BCA+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE在△DBC和△EAC中,∵,∴△DBC≌△EAC(SAS),∴∠EAC=∠B=60°又∵∠ACB=60°∴∠EAC=∠ACB∴AE∥BC.12.(2022秋•沙依巴克区校级期末)如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.【解答】(1)证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边);(2)∵∠CDE=∠CED=∠BCD=30°,∴∠CDF=30°,∵CF=4,∴DC=8,∵AD=CD,∴AC=16,∴△ABC的周长=3AC=48.13.(2022秋•常州期中)如图,AB=AC,∠BAC=120°,AD⊥AC,AE⊥AB.(1)求∠C的度数;(2)求证:△ADE是等边三角形.【解答】(1)解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,故答案为:30°.(2)证明:∵∠B=∠C=30°,AD⊥AC,AE⊥AB.∴∠ADC=∠AEB=60°,∴∠ADC=∠AEB=∠EAD=60°,∴△ADE是等边三角形.14.(2021•罗湖区校级模拟)如图,△ABC是等边三角形.(1)如图①,DE∥BC,分别交AB、AC于点D、E.求证:△ADE是等边三角形;(2)如图②,△ADE仍是等边三角形,点B在ED的延长线上,连接CE,判断∠BEC的度数及线段AE、BE、CE之间的数量关系,并说明理由.【解答】(1)证明:∵△ABC是等边三角形,∴∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠B=60°,∠AED=∠C=60°,∴△ADE是等边三角形;(2)解:AE+CE=BE.∵∠BAD+∠DAC=60°,∠CAE+∠DAC=60°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠AEC=∠ADB=120°,∴BE=BD+DE=AE+CE,∠BEC=∠AEC﹣∠AED=60°.15.(2021秋•香洲区期中)如图,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向B点以2cm/s的速度移动,点Q从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)你能用t表示BP和BQ的长度吗?请你表示出来.(2)请问几秒钟后,△PBQ为等边三角形?(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿△ABC三边运动,请问经过几秒钟后点P与点Q第一次在△ABC的哪条边上相遇?【解答】解:(1)∵△ABC是等边三角形,∴BC=AB=9cm,∵点P的速度为2cm/s,时间为ts,∴CP=2t,则PB=BC﹣CP=(9﹣2t)cm;∵点Q的速度为5cm/s,时间为ts,∴BQ=5t;(2)若△PBQ为等边三角形,则有BQ=BP,即9﹣2t=5t,解得t=,所以当t=s时,△PBQ为等边三角形;(3)设ts时,Q与P第一次相遇,根据题意得:5t﹣2t=18,解得t=6,则6s时,两点第一次相遇.当t=6s时,P走过得路程为2×6=12cm,而9<12<18,即此时P在AB边上,则两点在AB上第一次相遇.16.(西城区校级期中)如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连接BD、CE,相交于O.(1)试写出图中和BD相等的一条线段并说明你的理由;(2)求出BD和CE的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?请说明理由.【解答】解:(1)EC=BD,理由为:∵△ABE和△ACD都为等边三角形,∴∠EAB=∠DAC=60°,AE=AB,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△AEC和△ABD中,,∴△AEC≌△ABD(SAS),∴EC=BD;(2)BD和CE的夹角大小为60°,若改变△ABC的形状,这个夹角的度数不变,理由为:∵△ADC为等边三角形,∴∠ADC=∠ACD=60°,∵△AEC≌△ABD,∴∠ACE=∠ADB,∵∠EOD为△COD的外角,∴∠EOD=∠ODC+∠OCD=∠ODC+∠ACD+∠ACE=∠ODC+∠ADB+∠ACD=∠ADC+∠ACD=120°,即∠DOC=60°,则BD和CE的夹角大小为60°.17.(垦利区期中)如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H.(1)求证:△BCE≌△ACD;(2)求证:FH∥BD.【解答】证明:(1)∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 完整通信服务合同示范
- 借款合同建设工程项目
- 短期医疗借款协议
- 钢材订购协议范本
- 农业借款协议书样本
- 香料供货商合同格式
- 抵押合同解除还款责任限制协议
- 购销学校帐篷合同样本
- 在建住宅楼交易合同
- 婚车管家租赁服务合同
- 试验检测单位安全培训课件
- 二年级下册加减混合竖式练习360题附答案
- 公路沥青路面设计标准规范
- 2024年湖北交投智能检测股份有限公司招聘笔试参考题库含答案解析
- 2023年银行安全保卫知识考试题库(含答案)
- 水库白蚁防治标书
- 广东省深圳市宝安、罗湖、福田、龙华四区2023-2024学年数学九年级第一学期期末联考试题含解析
- 电子电路EWB仿真技术
- 小学三年级语文教研活动记录表1
- 初中九年级化学课件化学实验过滤
- 教学课件:《新时代新征程》
评论
0/150
提交评论