版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题19.2一次函数应用题专项讲练专题前言一次函数应用题在人教版八年级下册中属于必考题。常分为行程类问题、图象类方案选择问题、最优方案问题,该文对这几类问题进行方法总结与经典题型进行分类。重要题型题型1.行程类问题1)纵坐标表示行驶路程1.一般该类型代表时间,代表行驶路程,需要研究每条线段及拐点的实际意义;2.直线中=行驶速度;3.两线段的交点为两人的相遇点;4.两人间的距离.2)纵坐标表示两者之间的距离1.一般该类型代表时间,代表两人之间的距离,需要研究每条线段及拐点的实际意义;2.①当两人同向行驶时,速度差;②当两人相向行驶时,速度和;3.轴上的点为两人的相遇点;4.两人间的距离.例1.(2022·湖北武汉·八年级期末)甲、乙两车同时从A、B两地出发,相向而行,甲车到达B地后立即返回A.9min B.10min C.11min D.12min变式1.(2022·山东青岛·八年级期末)甲乙两地相距450千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,折线OAB表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,线段CD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,C(1,0),则在轿车追上货车后至到达乙地前,当轿车在货车前105千米时,所用的时间x为______小时.变式2.(2022·河北·武邑武罗学校八年级期末)已知A,C两地之间有一站点B,甲从A地匀速跑步去C地,2分钟后乙以50米/分钟的速度从站点B走向C地,两人到达C地后均原地休息.甲、乙两人与站点B的距离y(米)与甲所用的时间x(分钟)之间的关系如图所示.(1)站点B到C地的距离为_____米;(2)当x=_____时,甲、乙两人相遇.变式3.(2022•包河区期中)某天中午,小明从文具店步行返回学校,与此同时,小亮从学校骑自行车去文具店购买文具(购买文具时间忽略不计),然后原路返回学校,两人均匀速行驶,结果两人同时到达学校.小明、小亮两人离文具店的路程y1、y2(单位:米)与出发时间x(单位:分)之间的函数图象如图所示.(1)学校和文具店之间的路程是米,小亮的速度是小明速度的倍;(2)求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3)小明与小亮迎面相遇以后,再经过多长时间两人相距20米?例2.(2022·山西临汾·八年级期中)周末的清晨,小伟和妈妈一起去跑步.在跑步过程中,小伟和妈妈利用GPS定位功能记录了两人的跑步数据,并绘制了如图所示的图象,图中的折线表示小伟和妈妈之间的距离y(m)与妈妈的跑步时间x(min)之间的函数关系(已知小伟的速度比妈妈快,假设两人跑步过程中均为匀速运动,先到终点的人原地体息直到另一人到达终点),则下列的结论正确的是()A.两人跑步距离为1800m B.小伟跑步的总时长为30minC.妈妈的平均速度为240m/min D.小伟的平均速度比妈妈快180m/min变式1.(2022·重庆市南华中学校九年级月考)一艘轮船和一艘快艇分别从甲、乙两个港口同时出发(水流速度不计)相向而行,快艇匀速航行到达甲港后,立即原速返回乙港(掉头时间忽略不计),在返回途中追上轮船时刚好到达一个景点,轮船靠岸1小时供游客观赏游玩,然后继续以原速航行到乙港,两船到达乙港均停止航行,轮船和快艇之间的距离y(千米)与轮船出发时间x(小时)之间的函数图象如图所示,当快艇返回到乙港时,轮船距乙港还有______米.变式2.(2022·重庆市綦江区赶水中学三模)小李和小王分别从甲、乙两地同时步行出发,匀速相向而行小李的速度大于小王的速度,小李到达乙地后,小王继续前行.设出发小时后,两人相距千米,如图所示,折线表示从两人出发至小王到达甲地的过程中与之间的函数关系.下列说法错误的是(
)A.点的坐标意义是甲、乙两地相距千米B.由点可知小时小李、小王共行走了千米C.点表示小李、小王相遇,点的横坐标为D.线段表示小李到达乙地后,小王到达甲地的运动过程变式3.(2022•南关区一模)已知A,B两地之间有一条长240千米的公路.甲车从A地出发匀速开往B地,甲车出发半小时后,乙车从A地出发沿同一路线匀速追赶甲车,两车相遇后,乙车原路原速返回A地.两车之间的距离y(千米)与甲车行驶时间x(小时)之间的函数关系如图所示,请解答下列问题:(1)甲车的速度是千米/时,乙车的速度是千米/时,m=.(2)求乙车返回过程中,y与x之间的函数关系式.(3)当甲、乙两车相距160千米时,直接写出甲车的行驶时间.题型2.工程类问题例1.(2022·山东济南初二月考)一个附有进、出水管的空容器,每分钟进水的水量都是相同的.开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,容器内的水量y(升)与时间x(分)之间的函数关系如图,若从第12分钟起,只出水不进水,则从开始算起,容器内的水全部放完的时间是第________分钟.变式1.(2022·黑龙江哈尔滨·八年级期末)-个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是(
)A.30 B.32 C.34 D.36变式2.(2022·湖北湖北·八年级期末)某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:)与工作时间t(单位:h)之间的函数关系如图所示.则该绿化组提高工作效率前每小时完成的绿化面积是(
)A. B. C. D.题型3.图象类方案选择问题例1.(2022•深圳期中)某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.(1)有月租的收费方式是(填“①”或“②”),月租费是元.(2)分别写出①,②两种收费方式中y与自变量x之间的函数表达式:①;②.(3)当通讯时间是多少分钟时,两种收费方式的费用一样?(4)如果某用户一个月通讯时间是350分钟,请说明应该选择哪种收费方式更经济实惠.变式1.(2022·绵阳南山中学双语学校八年级阶段练习)甲、乙两家商场平时以同样的价格出售相同的商品.端午节期间两家商场都让利酬宾,两家商场的购物金额、(单位:元)与商品原价(单位:元)之间的关系如图所示,张阿姨计划在其中一家商场购原价为620元的商品,从省钱的角度你建议选择(
)A.甲 B.乙 C.甲、乙均可 D.不确定变式2.(2022·陕西·八年级期末)为促进复工复产,调动消费积极性,两个商场分别推出了如下促销活动.甲商场:所有商品按标价9折出售.乙商场:一次购买商品总额不超过300元的按原价付费,超过300元的部分打8折.设需要购买商品的原价总额为元,去甲商场购买应付元,去乙商场购买应付元,其函数图象如图所示.(1)分别求、与的函数关系式.(2)两图象交于点,请求出点坐标,并说明点的实际意义.(3)黄老师准备去商场购物,请你建议黄老师选择去哪个商场购物更划算.例2.(2022·辽宁盘锦·八年级期末)某单位要制作一批宣传材料,洽谈了两家公司.甲公司提出:每份材料收费20元,另收3000元设计费;乙公司提出:每份材料收费30元,不收设计费.(1)求甲公司收取费用y(元)与该单位要制作宣传材料x(份)之间的函数关系式(不要求写出自变量的取值范围);(2)选择哪家公司制作这批宣传材料,使此单位所付费用较少?变式1.(2022·辽宁沈阳·八年级期末)某单位要制作一批宣传材料.甲公司提出:每份材料收费20元,另收3000元设计费;乙公司提出:每份材料收费30元,不收设计费.(1)设该单位要制作x份宣传材料,选择甲公司时,所需的费用为元,选择乙公司时,所需的费用为元,请直接写出关于x的函数关系式;(2)该单位在哪家公司制作宣传材料所需费用少?请说明理由.变式2.(2022·山东德州初二期中)为改善生态环境,防止水土流失,某村计划在江汉堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:甲林场乙林场购树苗数量销售单价购树苗数量销售单价不超过1000棵时4元/棵不超过2000棵时4元/棵超过1000棵的部分3.8元/棵超过2000棵的部分3.6元/棵设购买白杨树苗x棵,到两家林场购买所需费用分别为y甲(元)、y乙(元).(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为元,若都在乙林场购买所需费用为元;(2)分别求出y甲、y乙与x之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?题型4最优方案问题解题步骤:1)将需求最值对象表示成一次函数;2)利用题中条件求出自变量的取值范围;3)利用一次函数的增减性求出的最值,并找出最优方案。例1.(2022·广东佛山市·八年级期中)已知某酒店的三人间和双人间客房标价为:三人间为每人每天200元,双人间为每人每天300元,为吸引客源,促进旅游,在“十·一”黄金周期间酒店进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间客房.(1)如果租住的每个客房正好住满,并且一天一共花去住宿费6300元.求租住了三人间、双人间客房各多少间?(2)设三人间共住了人,这个团一天一共花去住宿费元,请写出与的函数关系式,并写出自变量的取值范围.(3)一天6300元的住宿费是否为最低?如果不是,请设计一种方案:要求租住的房间正好被住满的,并使住宿费用最低,请写出设计方案,并求出最低的费用.变式1.(2022·长沙市雅礼实验中学九年级月考)雅礼中学打算购买三角梅、水仙装点学校道路,负责人小李去花卉基地调查发现:购买1盆三角梅和2盆水仙需要14元,购买2盆三角梅和1盆水仙需要13元.(1)求三角梅、水仙的单价各是多少元?(2)购买三角梅、水仙共200盆,且购买的三角梅不少于60盆,但不多于80盆:①设购买三角梅a盆,总费用为W元,求W与a的关系式;②当总费用最少时,应选择哪一种购买方案?最少费用为多少元?变式2.(2022·广东·湛江市初级实验中学八年级期末)北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台.如果从北京运往汉口、重庆的运费分别是400元/台、800元/台,从上海运往汉口、重庆的运费分别是300元/台、500元/台.求:(1)若总运费为8400元,上海运往汉口应是多少台?(2)若要求总运费不超过8200元,共有几种调运方案?(3)求出总运费最低的调运方案,最低总运费是多少元?变式3.(2022·湖北·思源实验学校八年级阶段练习)城有肥料吨,城有肥料吨,现要把这些肥料全部运往,两乡,从城往,两乡运肥料的费用分别为每吨元和元;从城往,两乡运肥料的费用分别为每吨元和元,现乡需要肥料吨,乡需要肥料吨,怎样调运总费用最少?例2.(2022·浙江杭州市·八年级期中)某商店销售5台A型和10台B型电脑的利润为3500元,销售10台A型和10台B型电脑的利润为4500元,(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共80台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这80台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调元,且限定商店销售B型电脑的利润不低于10000元,若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这80台电脑销售总利润最大的进货方案.变式1.(2022·成都西川中学九年级月考)为了满足学生的物质需求,某中学超市准备购进甲、乙两种绿色袋装食品.其中甲、乙两种绿色袋装食品的进价和售价如下表:甲乙进价(元/袋)m售价(元/袋)2013已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.(1)求m的值.(2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价-进价)不少于5200元,且不超5230元,求该超市进货甲种绿色袋装食品的数量范围.(3)在(2)的条件下,该超市准备对甲种袋装食品进行优惠促销活动,决定对甲种袋装食品每袋优惠元出售,乙种袋装食品价格不变.那么该超市要获得最大利润应如何进货?变式2.(2022•南阳模拟)为了保障羊肉正常供应,某畜牧集团的A,B两个养殖场共出栏肥羊2000只,B养殖场的肥羊数量是A养殖场的2倍少400只.这批肥羊将运往甲地1300只,乙地700只,运费如下表(单位:元/只).养殖场目的地AB甲2518乙2024(1)求A,B养殖场各出栏多少只肥羊?(2)设这批肥羊从A养殖场运往甲地x只(100≤x≤700),全部运往甲、乙两地的总费用为y元,求y与x的函数关系式,并设计使总运费最少的调运方案;(3)当每只肥羊的运费下降a元(0<a≤18且a为整数)时,按(2)中设计的调运方案,总运费不超过30000元,求a的最小值.课后专项训练:1.(2022·安徽淮北·八年级月考)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人之间的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①;②;③.其中正确结论的个数是()A.0个 B.1个 C.2个 D.3个变式2.(2022·湖南绥宁·八年级期末)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象,有以下结论:①m=1;②a=40;③甲车从A地到B地共用了6.5小时;④当两车相距50km时,乙车用时为h.其中正确结论的个数是()A.1 B.2 C.3 D.43.(2022·安徽八年级期中)如图,A,B两地相距240km,甲骑摩托车由A地驶往B地,出发1小时后,乙驾驶汽车由B地驶往A地,乙达到A地停留1小时后,按原路原速返回B地,恰好与甲同时到达B地,乙行驶过程中两人均匀速行驶,甲乙两人离各自出发点的路程y(km)与乙所用时间x(h)的关系如图,结合图象回答,当两人之间相距120km时,x=____________.4.(2022·广西横县·八年级期末)图中表示甲,乙两名选手在一次自行车越野赛中路程(千米)随时间(分)变化的图象,从图中可知比赛开始________分钟后两人第一次相遇.5.(2022•衢江区一模)某动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式;(2)求第一班车从入口处到达花鸟馆所需的时间;(3)若小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第几班车?6.(2022•沙坪坝区校级期中)冬天是吃羊肉的好时节.白萝卜炖羊肉,不仅鲜美可口,对慢性支气管炎、脾虚积食等病症有补益效果.所以一到冬天,羊肉就是各大超市的畅销品.某超市在冬至这天,购进了大量羊腿和羊排.顾客甲买了4斤羊腿,3斤羊排,一共花了272元;顾客乙买了2斤羊腿,1斤羊排,一共花了116元.(1)羊腿和羊排的售价分别是每斤多少元?(2)第二天进货时,超市老板根据前一天的销售情况,决定购进羊腿和羊排共180斤,且羊腿的重量不少于120斤,若在售价不变的情况下,每斤羊腿可盈利6元,而羊排的利润率为25%,问超市老板应该如何进货才能使得这批羊肉卖完时获利最大?最大利润是多少?7.(2022•五华区校级模拟)截至3月20日,全国累计报告接种新型冠状病毒疫苗7495.6万剂次.为了满足市场需求,尽快让全国人民都打上疫苗,某公司计划新增10个大、小两种车间共同生产同一种新型冠状病毒疫苗,已知1个大车间和2个小车间每周能生产疫苗共35万剂,2个大车间和1个小车间每周能生产疫苗共40万剂,大车间生产1万剂疫苗的平均成本为80万元,小车间生产1万剂疫苗的平均成本为70万元.(1)该公司大车间、小车间每周分别能生产疫苗多少万剂?(2)设新增x个大车间,新增的10个车间每周生产疫苗的总成本为y万元,求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(3)若新增的10个车间每周生产的疫苗不少于140万剂,新增的车间一共有哪几种新增方案,哪一种方案每周生产疫苗的总成本y最小?8.(2022•新城区校级期末)今年是中国共产党成立100周年,全国上下掀起了学习党史的热潮.某书店为了满足广大读者的阅读需求,准备购进A、B两种党史学习书籍.已知购进A、B两种书各1本需86元,购进A种书5本、B种书2本需340元.(1)求A、B两种书的进价;(2)书店决定A种书以每本80元出售,B种书以每本58元出售,为满足市场需求,现书店准备购进A、B两种书共100本,且A种书的数量不少于B种书数量的3倍,请问书店老板如何进货,可获利最大?并求出最大利润.9.(2022•潼南区期末)洪水无情,人有情,依靠政府战灾情.202特大洪水虽然给我区人民造成极大损失,但全区人民在区政府的领导之下,老百姓相互支持,很快恢复生产,并喜获丰收.2020年下半年,桂林坝某农户种植基地收获萝卜192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批萝卜,已知这两种货车的载重量分别为14吨/辆和8吨/辆,运往甲、乙两地的运费如下表:车型运费运往甲地/(元/辆)运往乙地/(元/辆)大货车720800小货车500650(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的萝卜不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.10.(2022•枣阳市模拟)为推进美丽乡村建设,改善人居环境,创建美丽家园.我市甲、乙两工厂积极生产了某种建设物资共800吨,甲工厂的生产量比乙工厂的2倍少100吨,这批建设物资将运往A地420吨,B地380吨,运费如表:(单位:元/吨)目的地生产厂AB甲2520乙1524(1)求甲、乙两厂各生产了这批建设物资多少吨?(2)设这批物资从甲工厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,写出x的取值范围并设计使总运费最少的调运方案;(3)由于甲工厂到A地的路况得到了改善,缩短了运输距离和运输时间,运费每吨降低m元(0<m≤15),其余路线运费不变.若到A,B两市的总运费的最小值不小于14020元,求m的取值范围.11.(2022·成都市八年级课时练习)某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动、每辆汽车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量(人/辆)4530租金(元/辆)400280(1)共需租多少辆汽车?(2)给出最节省费用的租车方案分析:(1)可以从乘车人数的角度考虑租多少辆汽车,要注意到以下要求:①要保证210名师生都有车坐;②要使每辆汽车上至少要有1名教师.根据①可知,汽车总数不能小于______;根据②可知,汽车总数不能大于______.综合起来可知汽车总数为______.(2)租车费用与所租车的种类有关.可以看出,当汽车总数a确定后,在满足各项要求的前提下.尽可能少地租用甲种客车可以节省费用.设租用x辆甲种客车,则租车费用y(单位:元)是x的函数,即.将(1)中确定的a的值代入上式,化简这个函数,得_________.为使240名师生有车坐,x不能小于________;为使租车费用不超过2300元,x不能超过________.综合起来可知x的取值为________.在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中哪个方案?试说明理由.12.(2022•安徽二模)小华与小明分别从甲,乙两地同时出发,沿一条笔直的人行步道相向而行,两人分别到达乙,甲两地后立即原路返回,当两人第二次相遇时停止运动.两人步行过程中速度保持不变,且小华的速度大于小明的速度;两人之间的距离y(单位:米)与所用时间x(单位:分钟)之间函数关系的部分图象如图所示,请结合图象完成下列问题:(1)求两名同学的速度分别是多少?(2)请直接写出线段AB所在直线的函数关系式;(3)请在图中补全图象,并在图上标出补充图象的端点坐标.(不必写计算过程)13.(2022•驻马店二模)2021年元月,国家发展改革委和生态环境部颁布的《关于进一步加强塑料污染治理的意见》正式实施,各大塑料生产企业提前做好了转型升级红星塑料经过市场研究购进一批A型可降解聚乳酸吸管和一批B型可降解纸吸管生产设备.已知购买5台A型设备和3台B型设备共需130万元,购买1台A型设备的费用恰好可购买2台B型设备.(1)求两种设备的价格.(2)市场开发部门经过研究,绘制出了吸管的销售收入与销售量(两种吸管总量)的关系(如y1所示)以及吸管的销售成本与销售量的关系(如y2所示).①y1的解析式为;y2的解析式为.②当销售量(x)满足条件时,该公司盈利(即收入大于成本).(3)由于市场上可降解吸管需求大增,公司决定购进两种设备共10台,其中A型设备每天生产量为1.2吨,B型设备每天生产量为0.4吨,每天生产的吸管全部售出.为保证公司每天都达到盈利状态,结合市场开发部门提供的信息,求出A型设备至少需要购进多少台?14.(2022•梁园区二模)某校八年级(2)班50位同学准备在五一当天利用班费集体去本地某游乐园游玩,经了解,该游乐园票价为200元/人,但对学生门票价格实行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折.10人以上超过10人的部分打b折,班委会进行了统计,设学生为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与学生x(人)之间的函数关系如图所示.(1)a=,b=;(2)直接写出y1、y2与x之间的函数关系式;(3)后来,由于五一当天部分同学家中有事不能前去游玩,只能安排这些同学在暑假中(非节假日)游玩,该班的班费不超过5440元,且全部用到了门票上,则五一当天至少有多少同学未能去游玩?15.(2022·湖北江汉·八年级期末)经过武汉人民的不懈努力,新冠疫情已得到有效控制,在武汉市全面复工复产的过程中,专家建议要定期对办公场所进行消毒杀菌(简称“消杀”),现有A,B,C三个公司针对中小企业开展消杀业务,价格如下:公司器材租赁费(单位:元)人工费用(单位:元/平方米)A00.5B400.3C2980(1)设某办公场所需要消杀的面积为x平方米(0<x≤1000),公司A,B的收费金额y1,y2都是x的函数,则这两个函数的解析式分别是,.若选择公司A最省钱,则所需要消杀的面积x的取值范围为;若选择公司B最省钱,则所需要消杀的面积x的取值范围为;若选择公司C最省钱,则所需要消杀的面积x的取值范围为.(2)A公司为了开拓市场推出了以下优惠活动:前a平方米按原价收费,超过的部分半价优惠,经过价格比较:消杀面积为700平方米的某企业选择了B公司,消杀面积为860平方米的某幼儿园选择了A公司,试根据以上信息,求a的取值范围.16.(2022·河南·八年级期中)国庆期间某一位公司老板准备和员工去上海旅游,甲旅行社承诺:“老板一人免费,员工可享受八折优惠”;乙旅行社承诺:“包括老板在内所有人按全票的七五折优惠”,若全票价为2000元.(1)设参加旅游的员工人数为x,甲、乙旅行社收费分别为y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课题申报书:鄂西土家族吊脚楼营造技艺保护与传承的可持续发展研究
- 部编版语文三年级上册期末试卷(含答案)
- 上海杉达学院《光电信息综合二》2023-2024学年第一学期期末试卷
- 上海农林职业技术学院《医学分子生物学》2023-2024学年第一学期期末试卷
- 专项08:现代文阅读-【中职专用】2025年职教高考学业考试语文二轮专项突破(福建专用)
- 上海闵行职业技术学院《商务礼仪》2023-2024学年第一学期期末试卷
- 上海民航职业技术学院《国际公法(双语)》2023-2024学年第一学期期末试卷
- 上海立信会计金融学院《田径Ⅲ》2023-2024学年第一学期期末试卷
- 上海立达学院《Jaa程序设计(一)》2023-2024学年第一学期期末试卷
- 上海行健职业学院《Oacle数据库实验》2023-2024学年第一学期期末试卷
- 2024工贸企业重大事故隐患判定标准解读
- 2024年上海高一数学试题分类汇编:三角(解析版)
- 玻璃制造中的安全与职业健康考核试卷
- 大单品战略规划
- 2023年北京语言大学新编长聘人员招聘考试真题
- 食品安全教育培训
- 管道保温施工方案
- 工艺工程师招聘笔试题与参考答案(某大型集团公司)
- 商务礼仪(通识课)学习通超星期末考试答案章节答案2024年
- 智能工厂梯度培育要素条件
- 手术分级目录(2023年修订)
评论
0/150
提交评论