专题03四边形综合题中考题型训练_第1页
专题03四边形综合题中考题型训练_第2页
专题03四边形综合题中考题型训练_第3页
专题03四边形综合题中考题型训练_第4页
专题03四边形综合题中考题型训练_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题3四边形综合题中考题型训练1.(2022•黔西南州)如图,在平面直角坐标系中,矩形ABCD的顶点A在第一象限,B,D分别在y轴上,AB交x轴于点E,AF⊥x轴,垂足为F.若OE=3,EF=1.以下结论正确的个数是()①OA=3AF;②AE平分∠OAF;③点C的坐标为(﹣4,﹣);④BD=6;⑤矩形ABCD的面积为24.A.2个 B.3个 C.4个 D.5个【分析】通过证明△AEF∽△BEO,可得BO=3AF,由矩形的性质可得OA=OB=3AF,故①正确;由等腰三角形的性质和相似三角形的性质可得∠OBA=∠OAB=∠EAF,可得AE平分∠OAF,故②正确;由勾股定理可求AF的长,即可求点A坐标,由矩形是中心对称图形,可得点C(﹣4,﹣),故③正确;由BD=2AO=6,故④错误,由面积公式可求矩形ABCD的面积=2×S△ABD=24,故⑤正确,即可求解.【解答】解:∵∠OEB=∠AEF,∠AFE=∠BOE=90°,∴△AEF∽△BEO,∴==3,∠EAF=∠OBE,∴BO=3AF,∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∴AO=OB,∴AO=3AF,∠OBA=∠OAB,故①正确;∴∠OAB=∠EAF,∴AE平分∠OAF,故②正确;∵OE=3,EF=1,∴OF=4,∵OA2﹣AF2=OF2,∴8AF2=16,∴AF=(负值舍去),∴点A坐标为(4,),∵点A,点C关于原点对称,∴点C(﹣4,﹣),故③正确;∵AF=,OA=3AF,∴AO=3,∴BO=DO=3,∴BD=6,故④错误;∵S△ABD=×6×4=12,∴矩形ABCD的面积=2×S△ABD=24,故⑤正确,故选:C.2.(2022•广州)如图,在菱形ABCD中,∠BAD=120°,AB=6,连接BD.(1)求BD的长;(2)点E为线段BD上一动点(不与点B,D重合),点F在边AD上,且BE=DF.①当CE⊥AB时,求四边形ABEF的面积;②当四边形ABEF的面积取得最小值时,CE+CF的值是否也最小?如果是,求CE+CF的最小值;如果不是,请说明理由.【分析】(1)过点D作DH⊥AB交BA的延长线于H,根据菱形120°内角得邻补角是60°,利用三角函数即可解答;(2)①设CE⊥AB交AB于M点,过点F作FN⊥AB交BA的延长线于N,因为利用即可求解S四边形ABEF=S△BEM+S梯形EMNF﹣S△AFN,所以先解直角三角形求出上面求各部分面积需要的边长即可解答;②设DF=x,则BE=DF=x,过点C作CH⊥AB于点H,过点F作FG⊥CH于点G,过点E作EY⊥CH于点Y,作EM⊥AB于M点,过点F作FN⊥AB交BA的延长线于N,所以四边形EMHY、FNHG是矩形,对边相等,方法同①,用含x的式子表示计算面积需要的各边长并代入到S四边形ABEF=S△BEM+S梯形EMNF﹣S△AFN中,根号里面化简、合并、配成二次函数的顶点式即可求出最值,从而解答.在计算CE+CF的最小值时,有两种方法,参照解答过程.【解答】解:(1)过点D作DH⊥AB交BA的延长线于H,如图:∵四边形ABCD是菱形,∴AD=AB=6,∵∠BAD=120°,∴∠DAH=60°,在Rt△ADH中,DH=AD•sin∠DAH=6×=3,AH=AD•cos∠DAH=6×=3,∴BD===6;(2)①设CE⊥AB交AB于M点,过点F作FN⊥AB交BA的延长线于N,如图:菱形ABCD中,∵AB=BC=CD=AD=6,AD∥BC,∠BAD=120°,∴∠ABC+∠BAD=180°,∴∠ABC=180°﹣∠BAD=60°,在Rt△BCM中,BM=BC•cos∠ABC=6×=3,∵BD是菱形ABCD的对角线,∴∠DBA=ABC=30°,在Rt△BEM中,ME=BM•tan∠DBM=3×=,BE===2,∵BE=DF,∴DF=2,∴AF=AD﹣DF=4,在Rt△AFN中,∠FAN=180°﹣∠BAD=60°,∴FN=AF•sin∠FAN=4×=2,AN=AF•cos∠FAN=4×=2,∴MN=AB+AN﹣BM=6+2﹣3=5,∴S四边形ABEF=S△BEM+S梯形EMNF﹣S△AFN=EM•BM+(EM+FN)•MN﹣AN•FN=3+(+2)×5﹣2×2=+﹣2=7;②当四边形ABEF的面积取最小值时,CE+CF的值是最小,理由:设DF=x,则BE=DF=x,过点C作CH⊥AB于点H,过点F作FG⊥CH于点G,过点E作EY⊥CH于点Y,作EM⊥AB于M点,过点F作FN⊥AB交BA的延长线于N,如图:∴EY∥FG∥AB,FN∥CH,∴四边形EMHY、FNHG是矩形,∴FN=GH,FG=NH,EY=MH,EM=YH,由①可知:ME=BE=x,BM=BE=x,AN=AF=(AD﹣DF)=3﹣x,FN=AF=,CH=BC=3,BH=BC=3,∴AM=AB﹣BM=6﹣x,AH=AB﹣BH=3,YH=ME=x,GH=FN=,EY=MH=BM﹣BH=x﹣3,∴CY=CH﹣YH=3﹣x,FG=NH=AN+AH=6﹣,CG=CH﹣GH=3﹣=x,∴MN=AB+AN﹣BM=6+3﹣x﹣x=9﹣2x,∴S四边形ABEF=S△BEM+S梯形EMNF﹣S△AFN=EM•BM+(EM+FN)•MN﹣AN•FN=x×x+(x+)•(9﹣2x)﹣(3﹣x)•=x2﹣x+9=(x﹣3)2+,∵>0,∴当x=3时,四边形ABEF的面积取得最小值,CE+CF=+•=+=+×=+×=+,∵(x﹣3)2≥0,当且仅当x=3时,(x﹣3)2=0,∴CE+CF=+≥12,当且仅当x=3时,CE+CF=12,即当x=3时,CE+CF的最小值为12,∴当四边形ABEF的面积取最小值时,CE+CF的值也最小,最小值为12.3.(2022•襄阳)矩形ABCD中,=(k>1),点E是边BC的中点,连接AE,过点E作AE的垂线EF,与矩形的外角平分线CF交于点F.【特例证明】(1)如图(1),当k=2时,求证:AE=EF;小明不完整的证明过程如下,请你帮他补充完整.证明:如图,在BA上截取BH=BE,连接EH.∵k=2,∴AB=BC.∵∠B=90°,BH=BE,∴∠1=∠2=45°,∴∠AHE=180°﹣∠1=135°.∵CF平分∠DCG,∠DCG=90°,∴∠3=∠DCG=45°.∴∠ECF=∠3+∠4=135°.∴……(只需在答题卡对应区域写出剩余证明过程)【类比探究】(2)如图(2),当k≠2时,求的值(用含k的式子表示);【拓展运用】(3)如图(3),当k=3时,P为边CD上一点,连接AP,PF,∠PAE=45°,,求BC的长.【分析】(1)证明△AHE≌△ECF(ASA)即可;(2)在BA上截取BH=BE,连接EH.证明△AHE∽△ECF,即可求解;(3)以A为旋转中心,△ADP绕A点旋转90°到△AP'H,设AB=3a,则BC=2a,由tan∠BAE=,∠EAP=45°,可得tan∠DAP=,从而判断△APE是等腰直角三角形,过点F作FQ⊥EG交于Q,又可得∠FEQ=∠BAE,则=,可求FQ=a,EQ=a,EF=a,能够证明△PAE∽△FPE,从而得到∠APE=∠PFE=90°,则PF=EF=a=,求出a=,即可得BC=2.【解答】(1)证明:如图,在BA上截取BH=BE,连接EH.∵k=2,∴AB=BC.∵∠B=90°,BH=BE,∴∠1=∠2=45°,∴∠AHE=180°﹣∠1=135°,∵CF平分∠DCG,∠DCG=90°,∴∠3=∠DCG=45°,∴∠ECF=∠3+∠4=135°,∵AE⊥EF,∴∠6+∠AEB=90°,∵∠5+∠AEB=90°,∴∠5=∠6,∵AB=BC,BH=BE,∴AH=EC,∴△AHE≌△ECF(ASA),∴AE=EF;(2)解:在BA上截取BH=BE,连接EH.∵∠B=90°,BH=BE,∴∠BHE=∠BEH=45°,∴∠AHE=135°,∵CF平分∠DCG,∠DCG=90°,∴∠DCF=∠DCG=45°.∴∠ECF=135°,∵AE⊥EF,∴∠FEC+∠AEB=90°,∵∠BAE+∠AEB=90°,∴∠BAE=∠FEC,∴△AHE∽△ECF,∴=,∵=,E是BC边的中点,∴EC=HB=BC,∴AH=AB﹣BC=(﹣)BC,∴=k﹣1;(3)如图(2),引例:在正方形ABCD中,EG⊥AC,设AB=3,BE=1,则EC=2,∵∠ACE=45°,∴EG=GC=,∵AC=3,∴AG=2,∴tan∠EAG=,tan∠BAE=,以A为旋转中心,△ADP绕A点旋转90°到△AP'H,∵k=3,∴=,设AB=3a,则BC=2a,由旋转可得∠P'AP=90°,连接P'E,HE,延长P'H交CD于点G,连接EG,∵AH=AD=2a,∴BH=a,∵E是BC的中点,∴BE=a,∴tan∠BAE=,∵∠EAP=45°,∴∠BAE+∠DAP=45°,∴tan∠DAP=,∴DP=a,∴PC=2a,∴AP=a,PE=a,AE=a,∴△APE是等腰直角三角形,∴∠APE=90°,∵AE⊥EF,∴∠PEF=∠PEA=45°,过点F作FQ⊥EG交于Q,∵CF平分∠PCG,∴∠FCQ=45°,∵∠FEQ+∠AEB=90°,∠BAE+∠AEB=90°,∴∠FEQ=∠BAE,∴=,∴FQ=a,∴EQ=a,∴EF=a,∴=,∴△PAE∽△FPE,∴∠APE=∠PFE=90°,∴PF=EF=a,∵PF=,∴a=,∴a=,∴BC=2.4.(2022•陕西)问题提出(1)如图①,在Rt△ABC中,∠B=90°,AB=3,BC=4.若点P是边AC上一点,则BP的最小值为;问题探究(2)如图②,在Rt△ABC中,∠B=90°,AB=BC=2,点E是BC的中点.若点P是边AC上一点,试求PB+PE的最小值;问题解决(3)某市一湿地公园内有一条四边形ABCD型环湖路,如图③所示.已知AD=2000米,CD=1000米,∠A=60°,∠B=90°,∠C=150°.为了进一步提升服务休闲功能,满足市民游园和健身需求,现要修一条由CE,EF,FC连接而成的步行景观道,其中,点E,F分别在边AB,AD上.为了节省成本,要使所修的这条步行景观道最短,即CE+EF+FC的值最小,求此时BE,DF的长.(路面宽度忽略不计)【分析】(1)过B作BP⊥AC于P,由垂线段最短可知,BP⊥AC时,BP的值最小,由面积法可得BP===;(2)作E关于直线AC的对称点E',连接CE',EE',BE',BE'交AC于P,由E,E'关于直线AC对称,可知PB+PE=PB+PE',而B,P,E'共线,故此时PB+PE最小,最小值为BE'的长度,根据∠B=90°,AB=BC=2,点E是BC的中点,可得CE=CE'=1,∠BCE'=90°,再用勾股定理可得答案;(3)作C关于AD的对称点M,连接DM,CM,CM交AD于H,作C关于AB的对称点N,连接BN,延长DC,AB交于G,连接NG,连接MN交AB于E,交AD于F,由C,N关于AB对称,C,M关于AD对称,CE=NE,CF=MF,又N,E,F,M共线,知此时CE+EF+CF最小,根据∠A=60°,∠ABC=90°,∠BCD=150°,可得∠ADC=60°,∠MCD=∠CMD=30°,即得DH=CD=500米,CH=MH=DH=500米,CM=1000米,由∠ADC=60°,∠A=60°,知△ADG是等边三角形,从而CG=DG﹣CD=1000米,同理可得CG=NG=1000米,∠BNG=∠BCG=30°,即得BG=CG=500米,BC=BN=BG=500米,故CN=1000米=CM,知∠CNM=∠CMN=30°,在Rt△BNE中,BE===500米,在Rt△MHF中,FH===500米,即得DF=FH+DH=1000米.【解答】解:(1)过B作BP⊥AC于P,如图:由垂线段最短可知,BP⊥AC时,BP的值最小,∵∠ABC=90°,AB=3,BC=4,∴AC==5,∵2S△ABC=AB•BC=AC•BP,∴BP===,故答案为:;(2)作E关于直线AC的对称点E',连接CE',EE',BE',BE'交AC于P,如图:∵E,E'关于直线AC对称,∴PE=PE',∴PB+PE=PB+PE',∵B,P,E'共线,∴此时PB+PE最小,最小值为BE'的长度,∵∠B=90°,AB=BC=2,∴∠ACB=45°,∵点E是BC的中点,∴CE=1,∵E,E'关于直线AC对称,∴∠ACE'=∠ACB=45°,CE=CE'=1,∴∠BCE'=90°,在Rt△BCE'中,BE'===,∴PB+PE的最小值为;(3)作C关于AD的对称点M,连接DM,CM,CM交AD于H,作C关于AB的对称点N,连接BN,延长DC,AB交于G,连接NG,连接MN交AB于E,交AD于F,如图:∵C,N关于AB对称,C,M关于AD对称,∴CE=NE,CF=MF,∴CE+EF+CF=NE+EF+MF,∵N,E,F,M共线,∴此时CE+EF+CF最小,∵∠A=60°,∠ABC=90°,∠BCD=150°,∴∠ADC=60°,∵C,M关于AD对称,∴∠MDH=∠CDH=60°,∠CHD=∠MHD=90°,CD=MD=1000米,∴∠MCD=∠CMD=30°,∴DH=CD=500米,CH=MH=DH=500米,∴CM=1000米,∵∠ADC=60°,∠A=60°,∴△ADG是等边三角形,∴DG=AD=2000米,∴CG=DG﹣CD=1000米,∵∠BCD=150°,∴∠BCG=30°,∵C,N关于AB对称,∠ABC=90°,∴C,B,N共线,CG=NG=1000米,∠BNG=∠BCG=30°,∴BG=CG=500米,BC=BN=BG=500米,∴CN=1000米=CM,∴∠CNM=∠CMN,∵∠BCD=150°,∠MCD=30°,∴∠NCM=120°,∴∠CNM=∠CMN=30°,在Rt△BNE中,BE===500(米),在Rt△MHF中,FH===500(米),∴DF=FH+DH=500+500=1000(米),答:BE的长为500米,DF的长为1000米.5.(2022•衢州)如图,在菱形ABCD中,AB=5,BD为对角线.点E是边AB延长线上的任意一点,连结DE交BC于点F,BG平分∠CBE交DE于点G.(1)求证:∠DBG=90°.(2)若BD=6,DG=2GE.①求菱形ABCD的面积.②求tan∠BDE的值.(3)若BE=AB,当∠DAB的大小发生变化时(0°<∠DAB<180°),在AE上找一点T,使GT为定值,说明理由并求出ET的值.【分析】(1)由菱形的性质得CB=AB,CD=AD,可证明△ABD≌△CBD,得∠CBD=∠ABC,而∠CBG=∠EBC,所以∠DBG=(∠ABC+∠EBC)=90°;(2)①连结AC交BD于点K,交DE于点L,由∠AKB=90°,AB=5,DK=BK=BD=3,根据勾股定理可求得AK=4,则AC=8,即可由S菱形ABCD=AC•BD求出菱形ABCD的面积;②先由∠DKL=∠DBG=90°证明AC∥BG,则==1,所以DL=GL=DG,再由DG=2GE得GE=DG,则DL=GL=GE,即可由CD∥AB,得==,可求得CL=AC=,所以KL=4﹣=,再求出tan∠BDE的值即可;(3)过点G作GT∥BC,交AE于点T,由∠DKL=∠DBG=90°可知,当∠DAB的大小发生变化时,始终都有BG∥AC,由△BGE∽△ALE得==1,所以EG=LG,同理可得DL=LG,再证明△ETG∽△EAD,得===,即可求得GT=,说明GT为定值,再求出ET的值即可.【解答】(1)证明:如图1,∵四边形ABCD是菱形,∴CB=AB,CD=AD,∵BD=BD,∴△ABD≌△CBD,∴∠CBD=∠ABD=∠ABC,∵∠CBG=∠EBG=∠EBC,∴∠DBG=∠CBD+∠CBG=(∠ABC+∠EBC)=×180°=90°.(2)解:①如图2,连结AC交BD于点K,交DE于点L,∵AC⊥BD,∴∠AKB=90°,∵AB=5,BD=6,∴BK=DK=BD=3,∴AK===4,∴CK=AK=4,∴AC=8,∴S菱形ABCD=AC•BD=×8×6=24.②∵∠DKL=∠DBG=90°,∴AC∥BG,∴==1,∴DL=GL=DG,∵DG=2GE,∴GE=DG,∴DL=GL=GE,∵CD∥AB,∴==,∴CL=AC=×8=,∴KL=4﹣=,∴tan∠BDE===.(3)解:如图3,过点G作GT∥BC,交AE于点T,则GT为定值,理由:连结AC交BD于点K,交DE于点L,∵∠DKL=∠DBG=90°,∴当∠DAB的大小发生变化时,始终都有BG∥AC,∴△BGE∽△ALE,∵BE=AB,∴==1,∴EG=LG,∵KL∥BG,∴==1,∴DL=LG=EG=ED,∵AD∥BC,∴GT∥AD,∴△ETG∽△EAD,∴===,∵BE=AB=DA=5,∴GT=DA=×5=,∴GT为定值;∵EA=BE+AB=10,∴ET=EA=×10=.6.(2022•黔西南州)如图,在正方形ABCD中,E,F分别是BC,CD边上的点(点E不与点B,C重合),且∠EAF=45°.(1)当BE=DF时,求证:AE=AF;(2)猜想BE,EF,DF三条线段之间存在的数量关系,并证明你的结论;(3)连接AC,G是CB延长线上一点,GH⊥AE,垂足为K,交AC于点H且GH=AE.若DF=a,CH=b,请用含a,b的代数式表示EF的长.【分析】(1)证明△ABE≌△ADF,从而得出结论;(2)在CD的延长线上截取DG=BE,类比(1)可证得△ABE≌△ADG,进而证明△GAF≌△EAF,进一步得出结论;(3)作HR⊥BC于R,证明△ABE≌△GRH,从而BE=HR,在Rt△CRH中可得出HR=b•sin45°=,进而BE=,根据(2)可得出结果.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF;(2)解:如图1,BE+DF=EF,理由如下:在CD的延长线上截取DG=BE,同理(1)可得:△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AG=AE,∵四边形ABCD是正方形,∴∠BAD=90°,∵∠EAF=45°,∴∠BAE+∠DAF=∠BAD﹣∠EAF=45°,∴∠DAG+∠DAF=45°,即:∠GAF=45°,∴∠GAF=∠EAF,在△GAF和△EAF中,,∴△GAF≌△EAF(SAS),∴FG=EF,∴DG+DF=EF,∴BE+DF=EF;(3)如图2,作HR⊥BC于R,∴∠HRG=90°,∵四边形ABCD是正方形,∴∠ABE=90°,∠ACB=∠ACD=45°,∴∠ABE=∠HRG,∠BAE+∠AEB=90°,∵GH⊥AE,∴∠EKG=90°,∴∠G+∠AEB=90°,∴∠G=∠BAE,在△ABE和△GRH中,,∴△ABE≌△GRH(AAS),∴BE=HR,在Rt△CRH中,∠ACB=45°,CH=b,∴HR=b•sin45°=b,∴BE=,∴EF=BE+DF=.7.(2022•阜新)已知,四边形ABCD是正方形,△DEF绕点D旋转(DE<AB),∠EDF=90°,DE=DF,连接AE,CF.(1)如图1,求证:△ADE≌△CDF;(2)直线AE与CF相交于点G.①如图2,BM⊥AG于点M,BN⊥CF于点N,求证:四边形BMGN是正方形;②如图3,连接BG,若AB=4,DE=2,直接写出在△DEF旋转的过程中,线段BG长度的最小值.【分析】(1)根据SAS证明三角形全等即可;(2)①根据邻边相等的矩形是正方形证明即可;②作DH⊥AG交AG于点H,作BM⊥AG于点M,证明△BMG是等腰直角三角形,求出BM的最小值,可得结论.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°.∵DE=DF,∠EDF=90°.∴∠ADC=∠EDF,∴∠ADE=∠CDF,在△ADE和△CDF中,∴△ADE≌△CDF(SAS);(2)①证明:如图2中,设AG与CD相交于点P.∵∠ADP=90°,∴∠DAP+∠DPA=90°.∵△ADE≌△CDF,∴∠DAE=∠DCF.∵∠DPA=∠GPC,∴∠DAE+∠DPA=∠GPC+∠GCP=90°.∴∠PGN=90°,∵BM⊥AG,BN⊥GN,∴四边形BMGN是矩形,∴∠MBN=90°.∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠MBN=90°.∴∠ABM=∠CBN.又∵∠AMB=∠BNC=90°,∴△AMB≌△CNB.∴MB=NB.∴矩形BMGN是正方形;②解:作DH⊥AG交AG于点H,作BM⊥AG于点M,此时△AMB≌△AHD.∴BM=AH.∵AH2=AD2﹣DH2,AD=4,∴DH最大时,AH最小,DH最大值=DE=2.∴BM最小值=AH最小值=.由(2)①可知,△BGM是等腰直角三角形,∴BG最小值=.8.(2022•包头)如图,在▱ABCD中,AC是一条对角线,且AB=AC=5,BC=6,E,F是AD边上两点,点F在点E的右侧,AE=DF,连接CE,CE的延长线与BA的延长线相交于点G.(1)如图1,M是BC边上一点,连接AM,MF,MF与CE相交于点N.①若AE=,求AG的长;②在满足①的条件下,若EN=NC,求证:AM⊥BC;(2)如图2,连接GF,H是GF上一点,连接EH.若∠EHG=∠EFG+∠CEF,且HF=2GH,求EF的长.【分析】(1)①根据平行四边形的性质和相似三角形的判定定理解答即可;②根据全等三角形的判定定理和等腰三角形的性质解答即可;(2)连接CF,通过相似三角形的判定定理和方程思想解答即可.【解答】解:(1)①∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,DC=AB=5,AD=BC=6,∴∠GAE=∠CDE,∠AGE=∠DCE,∴△AGE∽△DCE,∴=,∵AE=,∴DE=,∴AG=5×,∴AG=.②证明:∵AD∥BC,∴∠EFN=∠CMN,∵∠ENF=∠CNM,EN=NC,∴△ENF≌△CNM(AAS),∴EF=CM,∵AE=,AE=DF,∴DF=,∴EF=AD﹣AE﹣DF=3,∴CM=3,∵BC=6,∴BM=3,∴BM=MC,∴AB=AC,∴AM⊥BC.(2)连接CF,∵AB=AC,AB=DC,∴AC=DC,∴∠CAD=∠CDA,∵AE=DF,∴△AEC≌△DFC(SAS),∴CE=CF,∴∠CFE=∠CEF,∵∠EHG=∠EFG+∠CEF,∴∠EHG=∠EFG+∠CFE=∠CFG,∴EH∥CF,∴=,∵HF=2GH,∴=,∵AB∥CD,∴∠GAE=∠CDE,∠AGE=∠DCE,∴△AGE∽△DCE,∴=,∴=,∴DE=2AE,设AE=x,则DE=2x,∵AD=6,∴x+2x=6,∴x=2,即AE=2,∴DF=2,∴EF=AD﹣AE﹣DF=2.9.(2022•通辽)已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在AB上,求的值为多少;(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<90°),如图2,求的值为多少;(3)AB=8,AG=AD,将正方形AFEG绕A逆时针方向旋转α(0°<α<360°),当C,G,E三点共线时,请直接写出DG的长度.【分析】(1)由正方形性质知∠AGE=∠D=90°、∠DAC=45°,据此可得、GE∥CD,利用平行线分线段成比例定理可得;(2)连接AE,只需证△ADG∽△ACE即可得;(3)分两种情况画出图形,证明△ADG∽△ACE,根据相似三角形的判定和性质以及勾股定理即可得出答案.【解答】解:(1)∵四边形ABCD是正方形,四边形AFEG是正方形,∴∠AGE=∠D=90°,∠DAC=45°,∴,GE∥CD,∴,∴CE=DG,∴==2;(2)连接AE,由旋转性质知∠CAE=∠DAG=α,在Rt△AEG和Rt△ACD中,=cos45°=、=cos45°=,∴,∴△ADG∽△ACE,∴=,∴=;(3)①如图:由(2)知△ADG∽△ACE,∴,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形AFEG是正方形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴CG===8,∴CE=CG﹣EG=8﹣8,∴DG=CE=4﹣4;②如图:由(2)知△ADG∽△ACE,∴,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形AFEG是正方形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴∠AGC=90°∴CG===8,∴CE=CG+EG=8+8,∴DG=CE=4+4.综上,当C,G,E三点共线时,DG的长度为4﹣4或4+4.10.(2022•朝阳)【思维探究】(1)如图1,在四边形ABCD中,∠BAD=60°,∠BCD=120°,AB=AD,连接AC.求证:BC+CD=AC.小明的思路是:延长CD到点E,使DE=BC,连接AE.根据∠BAD+∠BCD=180°,推得∠B+∠ADC=180°,从而得到∠B=∠ADE,然后证明△ADE≌△ABC,从而可证BC+CD=AC,请你帮助小明写出完整的证明过程.【思维延伸】(2)如图2,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,连接AC,猜想BC,CD,AC之间的数量关系,并说明理由.【思维拓展】(3)在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=,AC与BD相交于点O.若四边形ABCD中有一个内角是75°,请直接写出线段OD的长.【分析】(1)如图1中,延长CD到点E,使DE=BC,连接AE.证明△ADE≌△ABC(SAS),推出∠DAE=∠BAC,AE=AC,推出△ACE的等边三角形,可得结论;(2)结论:CB+CD=AC.如图2中,过点A作AM⊥CD于点M,AN⊥CB交CB的延长线于点N.证明△AMD≌△ANB(AAS),推出DM=BN,AM=AN,证明Rt△ACM≌Rt△ACN(HL),推出CM=CN,可得结论;(3)分两种情形:如图3﹣1中,当∠CDA=75°时,过点O作OP⊥CB于点P,CQ⊥CD于点Q.如图3﹣2中,当∠CBD=75°时,分别求解即可.【解答】(1)证明:如图1中,延长CD到点E,使DE=BC,连接AE.∵∠BAD+∠BCD=180°,∴∠B+∠ADC=180°,∵∠ADE+∠ADC=180°∴∠B=∠ADE,在△ADE和△ABC中,,∴△ADE≌△ABC(SAS),∴∠DAE=∠BAC,AE=AC,∴∠CAE=∠BAD=60°,∴△ACE的等边三角形,∴CE=AC,∵CE=DE+CD,∴AC=BC+CD;(2)解:结论:CB+CD=AC.理由:如图2中,过点A作AM⊥CD于点M,AN⊥CB交CB的延长线于点N.∵∠DAB=∠DCB=90°,∴∠CDA+∠CBA=180°,∵∠ABN+∠ABC=180°,∴∠D=∠ABN,∵∠AMD=∠N=90°,AD=AB,∴△AMD≌△ANB(AAS),∴DM=BN,AM=AN,∵AM⊥CD,AN⊥CN,∴∠ACD=∠ACB=45°,∴AC=CM,∵AC=AC.AM=AN,∴Rt△ACM≌Rt△ACN(HL),∴CM=CN,∴CB+CD=CN﹣BN+CM+DM=2CM=AC;(3)解:如图3﹣1中,当∠CDA=75°时,过点O作OP⊥CB于点P,CQ⊥CD于点Q.∵∠CDA=75°,∠ADB=45°,∴∠CDB=30°,∵∠DCB=90°,∴CD=CB,∵∠DCO=∠BCO=45°,OP⊥CB,OQ⊥CD,∴OP=OQ,∴==,∴==,∵AB=AD=,∠DAB=90°,∴BD=AD=2,∴OD=×2=3﹣3.如图3﹣2中,当∠CBA=75°时,同法可证=,OD=×2=3﹣,综上所述,满足条件的OD的长为3﹣3或3﹣.11.(2022•南通)如图,矩形ABCD中,AB=4,AD=3,点E在折线BCD上运动,将AE绕点A顺时针旋转得到AF,旋转角等于∠BAC,连接CF.(1)当点E在BC上时,作FM⊥AC,垂足为M,求证:AM=AB;(2)当AE=3时,求CF的长;(3)连接DF,点E从点B运动到点D的过程中,试探究DF的最小值.【分析】(1)如图1中,作FM⊥AC,垂足为M,证明△ABE≌△AMF(AAS),可得结论;(2)利用勾股定理求出BE=,利用全等三角形的性质推出FM=BE=,再利用勾股定理求出CF即可;(3)分两种情形:当点E在BC上时,如图2中,过点D作DH⊥FM于点H.证明点F在射线FM上运动,当点F与K重合时,DF的值最小,求出DH即可.当点E在线段CD上时,如图3中,将线段AD绕点A顺时针旋转,旋转角为∠ABC,得到线段AR,连接FR,过点D作DQ⊥AR于点Q,DK⊥FR于点K.证明△ADE≌△ARF(SAS),推出∠ADE=∠ARF=90°,推出点F在直线RF上运动,当点D与K重合时,DF的值最小,可得结论.【解答】(1)证明:如图1中,作FM⊥AC,垂足为M,∵四边形ABCD是矩形,∴∠B=90°,∵FM⊥AC,∴∠B=∠AMF=90°,∵∠BAC=∠EAF,∴∠BAE=∠MAF,在△ABE和△AMF中,,∴△ABE≌△AMF(AAS),∴AB=AM;(2)解:当点E在BC上,在Rt△ABE中,AB=4,AE=3,∴BE===,∵△ABE≌△AMF,∴AB=AM=4,FM=BE=,在Rt△ABC中,AB=4,BC=3,∴AC===5,∴CM=AC﹣AM=5﹣4=1,∵∠CMF=90°,∴CF===.当点E在CD上时,可得CF=.综上所述,CF的值为或;(3)解:当点E在BC上时,如图2中,过点D作DH⊥FM于点H.∵△ABE≌△AMF,∴AM=AB=4,∵∠AMF=90°,∴点F在射线FM上运动,当点F与K重合时,DF的值最小,∵∠CMJ=∠ADC=90°,∠MCJ=∠ACD,∴△CMJ∽△CDA,∴==,∴==,∴MJ=,CJ=,∴DJ=CD﹣CJ=4﹣=,∵∠CMJ=∠DHJ=90°,∠CJM=∠DJH,∴△CMJ∽△DHJ,∴=,∴=,∴DH=,∴DF的最小值为.当点E在线段CD上时,如图3中,将线段AD绕点A顺时针旋转,旋转角为∠BAC,得到线段AR,连接FR,过点D作DQ⊥AR于点Q,DK⊥FR于点K.∵∠EAF=∠BAC,∠DAR=∠BAC,∴∠DAE=∠RAF,∵AE=AF,AD=AR,∴△ADE≌△ARF(SAS),∴∠ADE=∠ARF=90°,∴点F在直线RF上运动,当点D与K重合时,DF的值最小,∵DQ⊥AR,DK⊥RF,∴∠R=∠DQR=∠DKR=90°,∴四边形DKRQ是矩形,∴DK=QR,∴AQ=AD•cos∠BAC=3×=,∵AR=AD=3,∴DK=QR=AR﹣AQ=,∴DF的最小值为,∵<,∴DF的最小值为.解法二:当点E在BC上时,如图,将线段AD绕点A逆时针旋转,旋转角的度数=∠BAC,得到AT,连接DT,ET,DF.证明△DAF≌△TAE,推出DF=TE,当TE⊥BC时,DF的值最小,可得DF的最小值为.当点E在CD上时,同法可得DF的最小值为.12.(2022•台州)图1中有四条优美的“螺旋折线”,它们是怎样画出来的呢?如图2,在正方形ABCD各边上分别取点B1,C1,D1,A1,使AB1=BC1=CD1=DA1=AB,依次连接它们,得到四边形A1B1C1D1;再在四边形A1B1C1D1各边上分别取点B2,C2,D2,A2,使A1B2=B1C2=C1D2=D1A2=A1B1,依次连接它们,得到四边形A2B2C2D2;……如此继续下去,得到四条螺旋折线.(1)求证:四边形A1B1C1D1是正方形.(2)求的值.(3)请研究螺旋折线BB1B2B3…中相邻线段之间的关系,写出一个正确结论并加以证明.【分析】(1)根据正方形的性质得到AB=BC=CD=DA,∠A=∠B=90°,证明△A1AB1≌△B1BC1,根据全等三角形的性质得到A1B1=B1C1,∠AB1A1=∠BC1B1,根据正方形的判定定理证明结论;(2)根据勾股定理求出A1B1,计算即可;(3)先求出,再求出,根据规律证明结论.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=BC=CD=DA,∠A=∠B=90°,∵AB1=BC1=CD1=DA1=AB,∴AA1=BB1=AB,在△A1AB1和△B1BC1中,,∴△A1AB1≌△B1BC1(SAS),∴A1B1=B1C1,∠AB1A1=∠BC1B1,∵∠BB1C1+∠BC1B1=90°,∴∠AB1A1+∠BB1C1=90°,∴∠A1B1C1=90°,同理可证:B1C1=C1D1=D1A1,∴四边形A1B1C1D1是正方形.(2)解:设AB=5a,则AB1=4a,AA1=a,由勾股定理得:A1B1=a,∴==;(3)相邻线段的比为或.证明如下:∵BB1=AB,B1B2=A1B1,∴==,同理可得:=,∴相邻线段的比为或(答案不唯一).13.(2022•青岛)如图,在四边形ABCD中,AB∥CD,点E,F在对角线BD上,BE=EF=FD,∠BAF=∠DCE=90°.(1)求证:△ABF≌△CDE;(2)连接AE,CF,已知①(从以下两个条件中选择一个作为已知,填写序号),请判断四边形AECF的形状,并证明你的结论.条件①:∠ABD=30°;条件②:AB=BC.(注:如果选择条件①条件②分别进行解答,按第一个解答计分)【分析】(1)由等式的性质得BF=DE,由平行线的性质得∠ABF=∠CDE,从而利用AAS证明△ABF≌△CDE;(2)若选择①,由(1)可说明AF∥CE,则四边形AECF是平行四边形,由直角三角形斜边上中线的性质得AE=,利用含30°角的直角三角形的性质得AF=,则AE=AF,从而▱AECF是菱形;若选择②连接AC交BD于点O,同理可得四边形AECF是平行四边形,利用等腰三角形的性质可得BO⊥AC,即EF⊥AC,从而证明结论.【解答】(1)证明:∵BE=FD,∴BE+EF=FD+EF,∴BF=DE,∵AB∥CD,∴∠ABF=∠CDE,在△ABF和△CDE中,∴△ABF≌△CDE(AAS);(2)解:若选择条件①:四边形AECF是菱形,理由如下:由(1)得,△ABF≌△CDE,∴AF=CE,∠AFB=∠CED,∴AF∥CE,∴四边形AECF是平行四边形,∵∠BAF=90°,BE=EF,∴AE=,∵∠BAF=90°,∠ABD=30°,∴AF=,∴AE=AF,∴▱AECF是菱形;若选择条件②:四边形AECF是菱形,理由如下:连接AC交BD于点O,由①得:△ABF≌△CDE,∴AF=CE,∠AFB=∠CED,∴AF∥CE,∴四边形AECF是平行四边形,∴AO=CO,∵AB=BC,∴BO⊥AC,即EF⊥AC,∴▱AECF是菱形.故答案为:①(答案不唯一).14.(2022•日照)如图1,△ABC是等腰直角三角形,AC=BC=4,∠C=90°,M,N分别是边AC,BC上的点,以CM,CN为邻边作矩形PMCN,交AB于E,F.设CM=a,CN=b,若ab=8.(1)判断由线段AE,EF,BF组成的三角形的形状,并说明理由;(2)①当a=b时,求∠ECF的度数;②当a≠b时,①中的结论是否成立?并说明理由.【分析】(1)分别表示出AE,BF及EF,计算出AE2+BF2及EF2,从而得出结论;(2)①连接PC,可推出PC⊥AB,可推出AE=PE=PF=BF,从而得出ME=EG=GF=NF,进而得出CE平分∠PCF,CF平分∠BCP,从而得出结果;②将△BCF逆时针旋转90°至△ACD,连接DE,可推出DE=EF,进而推出△DCF≌△FCE,进一步得出结果.【解答】解:(1)线段AE,EF,BF组成的是直角三角形,理由如下:∵AM=AC﹣CM=4﹣a,BN=4﹣b,∴AE=,BF=,∴AE2+BF2=2(4﹣a)2+2(4﹣b)2=2(a2+b2﹣8a﹣8b+32),∵AB==4,∴EF=AB﹣AE﹣BF=[4﹣(4﹣a)﹣(4﹣b)]=(a+b﹣4),∵ab=8,EF2=2(a+b﹣4)2=2(a2+b2﹣8a﹣8b+16+2ab)=2(a2+b2﹣8a﹣8b+32),∴AE2+BF2=EF2,∴线段AE,EF,BF组成的是直角三角形;(2)①如图1,连接PC交EF于G,∵a=b,∴ME=AM=BN=NF,∵四边形CNPM是矩形,∴矩形CNPM是正方形,∴PC平分∠ACB,∴CG⊥AB,∴∠PGE=90°,∵CM=CN=PM=PN,∴PE=PF,∵△AEM,△BNF,△PEF是等腰直角三角形,EF2=AE2+BF2,EF2=PE2+PF2,∴PE=AE=PF=BF,∴ME=EG=FG=FN,∴∠MCE=∠GCE,∠NCF=∠GCF,∵∠ACB=90°,∴∠ECG+∠FCG=,∴∠ECF=45°;②如图2,仍然成立,理由如下:将△BCF逆时针旋转90°至△ACD,连接DE,∴∠DAC=∠B=45°,AD=BF,∴∠DAE=∠DAC+∠CAB=90°,∴DE2=AD2+AE2=BF2+AE2∵EF2=BF2+AE2,∴DE=EF,∵CD=CF,CE=CE,∴△DCE≌△FCE(SSS),∴∠ECF=∠DCE=.15.(2022•临沂)已知△ABC是等边三角形,点B,D关于直线AC对称,连接AD,CD.(1)求证:四边形ABCD是菱形;(2)在线段AC上任取一点P(端点除外),连接PD.将线段PD绕点P逆时针旋转,使点D落在BA延长线上的点Q处.请探究:当点P在线段AC上的位置发生变化时,∠DPQ的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ与CP之间的数量关系,并加以证明.【分析】(1)根据菱形的判定定理和轴对称图形的性质解答即可;(2)连接PB,过点P分别作PE∥CB交AB于点E,PF⊥AB于点F,根据全等三角形的判定定理,等腰三角形的性质,轴对称图形的性质解答即可;(3)根据等腰三角形的性质解答即可.【解答】(1)证明:连接BD,等边△ABC中,AB=BC=AC,∵点B、D关于直线AC对称,∴DC=BC,AD=AB,∴AB=BC=CD=DA,∴四边形ABCD是菱形;(2)解:当点P在线段AC上的位置发生变化时,∠DPQ的大小不发生变化,始终等于60°,理由如下:∵将线段PD绕点P逆时针旋转,使点D落在BA延长线上的点Q处,∴PQ=PD,等边△ABC中,AB=BC=AC,∠BAC=∠ABC=∠ACB=60°,连接PB,过点P分别作PE∥CB交AB于点E,PF⊥AB于点F,如图则∠APE=∠ACB=60°,∠AEP=∠ABC=60°,∴∠BAC=∠APE=∠AEP=60°,∴△APE是等边三角形,∴AP=EP=AE,而PF⊥AB,∴∠APF=∠EPF,∵点B,D关于直线AC对称,点P在线段AC上,∴PB=PD,∠DPA=∠BPA,∴PQ=PB,∴∠PDA=∠PBA,∠PBA=∠PQA,∴∠PDA=∠PQB∴∠DPQ=∠DAQ=60°;解法二:连接BP,通过证明△ADP≌△ABP,利用旋转和全等三角形的性质分析求解;(3)解:在满足(2)的条件下,线段AQ与CP之间的数量关系是AQ=CP,证明如下:∵AC=AB,AP=AE,∴AC﹣AP=AB﹣AE,即CP=BE,∵AP=EP,PF⊥AB,∴AF=FE,∵PQ=PB,PF⊥AB,∴QF=BF,∴QF﹣AF=BF﹣EF,即AQ=BE,∴AQ=CP.16.(2022•辽宁)在▱ABCD中,∠C=45°,AD=BD,点P为射线CD上的动点(点P不与点D重合),连接AP,过点P作EP⊥AP交直线BD于点E.(1)如图①,当点P为线段CD的中点时,请直接写出PA,PE的数量关系;(2)如图②,当点P在线段CD上时,求证:DA+DP=DE;(3)点P在射线CD上运动,若AD=3,AP=5,请直接写出线段BE的长.【分析】(1)连接BD,可知△BDC是等腰直角三角形,再证明△ADP≌△EBP(ASA),得PA=PE;(2)过点P作PF⊥CD交DE于点F,首先证明△ADP≌△EFP(ASA),得AD=EF,再证明△DPF是等腰直角三角形,可得结论;(3)分点P在线段CD和CD的延长线上两种情形,分别画出图形,利用△ADP≌△EFP(ASA),得AD=EF,从而解决问题.【解答】(1)解:连接BP,∵四边形ABCD是平行四边形,∴AD=CB,∵AD=BD,∴∠BDC=∠C=45°,∴△BDC是等腰直角三角形,∵点P为CD的中点,∴DP=BP,∠CPB=90°,∴∠ADP=∠PBE=135°,∵PA⊥PE,∴∠APE=∠DPB=90°,∴∠APD=∠BPE,∴△ADP≌△EBP(ASA),∴PA=PE;(2)证明:如图,过点P作PF⊥CD交DE于点F,∵PF⊥CD,EP⊥AP,∴∠DPF=∠APE=90°,∴∠DPA=∠FPE,∵四边形ABCD是平行四边形,∴∠C=∠DAB=45°,AB∥CD,又∵AD=BD,∴∠DAB=∠DBA=∠C=∠CDB=45°,∴∠ADB=∠DBC=90°,∴∠PFD=45°,∴∠PFD=∠PDF,∴PD=PF,∴∠PDA=∠PFE=135°,∴△ADP≌△EFP(ASA),∴AD=EF,在Rt△FDP中,∠PDF=45°,∵cos∠PDF=,∴DF=,∵DE=DF+EF,∴DA+DP=DE;(3)解:当点P在线段CD上时,如图②,作AG⊥CD,交CD延长线于G,则△ADG是等腰直角三角形,∴AG=DG=3,∴GP=4,∴PD=1,由(2)得,DA+DP=DE;∴3+=DE,∴DE=4,∴BE=DE﹣BD=4﹣3=,当点P在CD的延长线上时,作AG⊥CD,交CD延长线于G,同理可得△ADP≌△EFP(AAS),∴AD=EF,∵PD=PG+DG=4+3=7,∴DF=PD=7,∴BE=BD+DF﹣EF=DF=7,综上:BE的长为或7.17.(2022•河南)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:∠EMB或∠CBM或∠ABP或∠PBM(任写一个即可).(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=15°,∠CBQ=15°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.【分析】(1)由折叠的性质可得AE=BE=AB,∠AEF=∠BEF=90°,AB=BM,∠ABP=∠PBM,由锐角三角函数可求∠EMB=30°,即可求解;(2)①由“HL”可证Rt△BCQ≌Rt△BMQ,可得∠CBQ=∠MBQ=15°;②由“HL”可证Rt△BCQ≌Rt△BMQ,可得∠CBQ=∠MBQ;(3)分两种情况讨论,由折叠的性质和勾股定理可求解.【解答】解:(1)∵对折矩形纸片ABCD,∴AE=BE=AB,∠AEF=∠BEF=90°,∵沿BP折叠,使点A落在矩形内部点M处,∴AB=BM,∠ABP=∠PBM,∵sin∠BME==,∴∠EMB=30°,∴∠ABM=60°,∴∠CBM=∠ABP=∠PBM=30°,故答案为:∠EMB或∠CBM或∠ABP或∠PBM(任写一个即可);(2)①由(1)可知∠CBM=30°,∵四边形ABCD是正方形,∴AB=BC,∠BAD=∠C=90°,由折叠可得:AB=BM,∠BAD=∠BMP=90°,∴∠BM=BC,∠BMQ=∠C=90°,又∵BQ=BQ,∴Rt△BCQ≌Rt△BMQ(HL),∴∠CBQ=∠MBQ=15°,故答案为:15,15;②∠MBQ=∠CBQ,理由如下:∵四边形ABCD是正方形,∴AB=BC,∠BAD=∠C=90°,由折叠可得:AB=BM,∠BAD=∠BMP=90°,∴BM=BC,∠BMQ=∠C=90°,又∵BQ=BQ,∴Rt△BCQ≌Rt△BMQ(HL),∴∠CBQ=∠MBQ;(3)由折叠的性质可得DF=CF=4cm,AP=PM,∵Rt△BCQ≌Rt△BMQ,∴CQ=MQ,当点Q在线段CF上时,∵FQ=1cm,∴MQ=CQ=3cm,DQ=5cm,∵PQ2=PD2+DQ2,∴(AP+3)2=(8﹣AP)2+25,∴AP=,当点Q在线段DF上时,∵FQ=1cm,∴MQ=CQ=5cm,DQ=3cm,∵PQ2=PD2+DQ2,∴(AP+5)2=(8﹣AP)2+9,∴AP=,综上所述:AP的长为cm或cm.18.(2022•深圳)(1)发现:如图①所示,在正方形ABCD中,E为AD边上一点,将△AEB沿BE翻折到△BEF处,延长EF交CD边于G点.求证:△BFG≌△BCG;(2)探究:如图②,在矩形ABCD中,E为AD边上一点,且AD=8,AB=6.将△AEB沿BE翻折到△BEF处,延长EF交BC边于G点,延长BF交CD边于点H,且FH=CH,求AE的长.(3)拓展:如图③,在菱形ABCD中,AB=6,E为CD边上的三等分点,∠D=60°.将△ADE沿AE翻折得到△AFE,直线EF交BC于点P,求PC的长.【分析】(1)根据将△AEB沿BE翻折到△BEF处,四边形ABCD是正方形,得AB=BF,∠BFE=∠A=90°,即得∠BFG=90°=∠C,可证Rt△BFG≌Rt△BCG(HL);(2)延长BH,AD交于Q,设FH=HC=x,在Rt△BCH中,有82+x2=(6+x)2,得x=,DH=DC﹣HC=,由△BFG∽△BCH,得==,BG=,FG=,而EQ∥GB,DQ∥CB,可得=,即=,DQ=,设AE=EF=m,则DE=8﹣m,因=,有=,即解得AE的长为;(3)分两种情况:(Ⅰ)当DE=DC=2时,延长FE交AD于Q,过Q作QH⊥CD于H,设DQ=x,QE=y,则AQ=6﹣x,CP=2x,由AE是△AQF的角平分线,有=①,在Rt△HQE中,(2﹣x)2+(x)2=y2②,可解得x=,CP=2x=;(Ⅱ)当CE=DC=2时,延长FE交AD延长线于Q',过Q'作Q'H'⊥CD交CD延长线于H',同理解得x'=,CP=.【解答】(1)证明:∵将△AEB沿BE翻折到△BEF处,四边形ABCD是正方形,∴AB=BF,∠BFE=∠A=90°,∴∠BFG=90°=∠C,∵AB=BC=BF,BG=BG,∴Rt△BFG≌Rt△BCG(HL);(2)解:延长BH,AD交于Q,如图:设FH=HC=x,在Rt△BCH中,BC2+CH2=BH2,∴82+x2=(6+x)2,解得x=,∴DH=DC﹣HC=,∵∠BFG=∠BCH=90°,∠HBC=∠FBG,∴△BFG∽△BCH,∴==,即==,∴BG=,FG=,∵EQ∥GB,DQ∥CB,∴△EFQ∽△GFB,△DHQ∽△CHB,∴=,即=,∴DQ=,设AE=EF=m,则DE=8﹣m,∴EQ=DE+DQ=8﹣m+=﹣m,∵△EFQ∽△GFB,∴=,即=,解得m=,∴AE的长为;方法2:连接GH,如图:∵CH=FH,GH=GH,∴Rt△FGH≌Rt△CGH(HL),∴CG=FG,设CG=FG=x,则BG=8﹣x,在Rt△BFG中,BF2+FG2=BG2,∴62+x2=(8﹣x)2,解得x=,∴BG=BC﹣x=,∵∠GBE=∠AEB=∠FEB,∴EG=BG=,∴EF=EG﹣FG=;∴AE=;(3)解:方法一:(Ⅰ)当DE=DC=2时,延长FE交AD于Q,过Q作QH⊥CD于H,如图:设DQ=x,QE=y,则AQ=6﹣x,∵CP∥DQ,∴△CPE∽△QDE,∴==2,∴CP=2x,∵△ADE沿AE翻折得到△AFE,∴EF=DE=2,AF=AD=6,∠QAE=∠FAE,∴AE是△AQF的角平分线,∴=,即=①,∵∠D=60°,∴DH=DQ=x,HE=DE﹣DH=2﹣x,HQ=DH=x,在Rt△HQE中,HE2+HQ2=EQ2,∴(2﹣x)2+(x)2=y2②,联立①②可解得x=,∴CP=2x=;(Ⅱ)当CE=DC=2时,延长FE交AD延长线于Q',过Q'作Q'H'⊥CD交CD延长线于H',如图:设DQ'=x',Q'E=y',则AQ'=6+x',同理∠Q'AE=∠EAF,∴=,即=,由H'Q'2+H'E2=Q'E2得:(x')2+(x'+4)2=y'2,可解得x'=,∴CP=x'=,综上所述,CP的长为或.方法二:(Ⅰ)当DE=DC=2时,连接CF,过P作PK⊥CD于K,如图:∵四边形ABCD是菱形,∠D=60°,∴△ABC,△ADC是等边三角形,∴∠ACB=∠ACD=60°,AD=AC,∴∠PCK=60°,∵将△ADE沿AE翻折得到△AFE,∴∠AFE=∠D=60°=∠ACB,AF=AD=AC,EF=DE=2,∴∠AFC=∠ACF,∴∠PFC=∠PCF,∴PF=PC,设PF=PC=2m,在Rt△PCK中,CK=m,PK=m,∴EK=EC﹣CK=4﹣m,在Rt△PEK中,EK2+PK2=PE2,∴(4﹣m)2+(m)2=(2+2m)2,解得m=,∴PC=2m=;(Ⅱ)当CE=DC=2时,连接CF,过P作PT⊥CD交DC延长线于T,如图:同(Ⅰ)可证AC=AD=AF,∠ACB=60°=∠D=∠AFE,∴∠ACF=∠AFC,∴∠ACF﹣∠ACB=∠AFC﹣∠AFE,即∠PCF=∠PFC,∴PC=PF,设PC=PF=2n,在Rt△PCT中,CT=n,PT=n,∴ET=CE+CT=2+n,EP=EF﹣PF=DE﹣PF=4﹣2n,在Rt△PET中,PT2+ET2=PE2,∴(n)2+(2+n)2=(4﹣2n)2,解得n=,∴PC=2n=,综上所述,CP的长为或.19.(2022•益阳)如图,矩形ABCD中,AB=15,BC=9,E是CD边上一点(不与点C重合),作AF⊥BE于F,CG⊥BE于G,延长CG至点C′,使C′G=CG,连接CF,AC′.(1)直接写出图中与△AFB相似的一个三角形;(2)若四边形AFCC′是平行四边形,求CE的长;(3)当CE的长为多少时,以C′,F,B为顶点的三角形是以C′F为腰的等腰三角形?【分析】(1)因为△AFB是直角三角形,所以和它相似的三角形都是直角三角形,有三个直角三角形相似和△AFB相似,解答时任意写出一个即可;(2)根据△AFB∽△BGC,得=,即==,设AF=5x,BG=3x,根据△AFB∽△BCE∽△BGC,列比例式可得CE的长;(3)分两种情况:①当C'F=BC'时,如图2,②当C'F=BF时,如图3,根据三角形相似列比例式可得结论.【解答】解:(1)(任意回答一个即可);①如图1,△AFB∽△BCE,理由如下:∵四边形ABCD是矩形,∴DC∥AB,∠BCE=∠ABC=90°,∴∠BEC=∠ABF,∵AF⊥BE,∴∠AFB=90°,∴∠AFB=∠BCE=90°,∴△AFB∽△BCE;②△AFB∽△CGE,理由如下:∵CG⊥BE,∴∠CGE=90°,∴∠CGE=∠AFB,∵∠CEG=∠ABF,∴△AFB∽△CGE;③△AFB∽△BGC,理由如下:∵∠ABF+∠CBG=∠CBG+∠BCG=90°,∴∠ABF=∠BCG,∵∠AFB=∠CGB=90°,∴△AFB∽△BGC;(2)∵四边形AFCC'是平行四边形,∴AF=CC',由(1)知:△AFB∽△BGC,∴=,即==,设AF=5x,BG=3x,∴CC'=AF=5x,∵CG=C'G,∴CG=C'G=2.5x,∵△AFB∽△BCE∽△BGC,∴=,即=,∴CE=7.5;(3)分两种情况:①当C'F=BC'时,如图2,∵C'G⊥BE,∴BG=GF,∵CG=C'G,∴四边形BCFC'是菱形,∴CF=CB=9,由(2)知:AF=5x,BG=3x,∴BF=6x,∵△AFB∽△BCE,∴=,即=,∴=,∴CE=;②当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论