版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省华宁二中2025届高一上数学期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,,全集,则()A. B.C. D.I2.直线x+1=0的倾斜角为A.0 B.C. D.3.函数的定义域为,值域为,则的取值范围是()A. B.C. D.4.圆过点的切线方程是()A. B.C. D.5.设,则的大小关系是()A. B.C. D.6.设,,,则a、b、c的大小关系是A. B.C. D.7.下列区间是函数的单调递减区间的是()A. B.C. D.8.已知幂函数的图象过点(2,),则的值为()A B.C. D.9.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m∥α,m∥β,则α∥β②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β其中正确的命题是()A.①② B.②③C.③④ D.④10.设,满足约束条件,则的最小值与最大值分别为()A., B.2,C.4,34 D.2,34二、填空题:本大题共6小题,每小题5分,共30分。11.已知是定义在正整数集上的严格减函数,它的值域是整数集的一个子集,并且,,则的值为___________.12.函数定义域为________.(用区间表示)13.如图,在空间四边形中,平面平面,,,且,则与平面所成角的度数为________14.若函数在区间内为减函数,则实数a的取值范围为___________.15.已知,函数,若函数有两个零点,则实数k的取值范围是________16.将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将图象向右平移个单位后,所得图象关于原点对称,则的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且.(1)求实数及的值;(2)判断函数的奇偶性并证明.18.已知集合,.(1)当时,求;(2)若,求实数的取值范围.19.某企业生产A,B两种产品,根据市场调查与预测,A产品的利润y与投资x成正比,其关系如图(1)所示;B产品的利润y与投资x的算术平方根成正比,其关系如图(2)所示(注:利润y与投资x的单位均为万元)(1)分别求A,B两种产品的利润y关于投资x的函数解析式;(2)已知该企业已筹集到200万元资金,并将全部投入A,B两种产品的生产①若将200万元资金平均投入两种产品的生产,可获得总利润多少万元?②如果你是厂长,怎样分配这200万元资金,可使该企业获得总利润最大?其最大利润为多少万元?20.记不等式的解集为A,不等式的解集为B.(1)当时,求;(2)若,求实数a的取值范围.21.若函数自变量的取值区间为时,函数值的取值区间恰为,就称区间为的一个“罗尔区间”.已知函数是定义在上的奇函数,当时,.(1)求的解析式;(2)求函数在内的“罗尔区间”;(3)若以函数在定义域所有“罗尔区间”上的图像作为函数的图像,是否存在实数,使集合恰含有2个元素.若存在,求出实数的取值集合;若不存在,说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据并集、补集的概念,计算即可得答案.【详解】由题意得,所以故选:B2、C【解析】轴垂直的直线倾斜角为.【详解】直线垂直于轴,倾斜角为.故选:C【点睛】本题考查直线倾斜角,属于基础题.3、B【解析】观察在上的图象,从而得到的取值范围.【详解】解:观察在上的图象,当时,或,当时,,∴的最小值为:,的最大值为:,∴的取值范围是故选:B【点睛】本题考查余弦函数的定义域和值域,余弦函数的图象,考查数形结合思想,属基础题4、D【解析】先求圆心与切点连线的斜率,再利用切线与连线垂直求得切线的斜率结合点斜式即可求方程.【详解】由题意知,圆:,圆心在圆上,,所以切线的斜率为,所以在点处的切线方程为,即.故选:D.5、B【解析】利用“”分段法确定正确选项.【详解】,,所以.故选:B6、D【解析】根据指数函数与对数函数性质知,,,可比较大小,【详解】解:,,;故选D【点睛】在比较幂或对数大小时,一般利用指数函数或对数函数的单调性,有时还需要借助中间值与中间值比较大小,如0,1等等7、D【解析】取,得到,对比选项得到答案.【详解】,取,,解得,,当时,D选项满足.故选:D.8、A【解析】令幂函数且过(2,),即有,进而可求的值【详解】令,由图象过(2,)∴,可得故∴故选:A【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题9、D【解析】利用平面与平面垂直和平行的判定和性质,直线与平面平行的判断,对选项逐一判断即可【详解】①若m∥α,m∥β,则α∥β或α与β相交,错误命题;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交.错误的命题;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交,也可能n∥α,是错误命题;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.是正确的命题故选D【点睛】本题考查平面与平面的位置关系,直线与平面的位置关系,考查空间想象力,属于中档题.10、D【解析】画出约束条件表示的可行域,通过表达式的几何意义,判断最大值与最小值时的位置求出最值即可【详解】解:由,满足约束条件表示的可行域如图,由,解得的几何意义是点到坐标原点的距离的平方,所以的最大值为,的最小值为:原点到直线的距离故选D【点睛】本题考查简单的线性规划的应用,表达式的几何意义是解题的关键,考查计算能力,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用严格单调减函数定义求得值,然后在由区间上整数个数,可确定的值【详解】,根据题意,,又,,所以,即,,在上只有13个整数,因此可得,故答案为:12、【解析】由对数真数大于0,偶次根式被开方式大于等于0,列出不等式组求解即可得答案.【详解】解:由,得,所以函数的定义域为,故答案为:.13、【解析】首先利用面面垂直转化出线面垂直,进一步求出线面的夹角,最后通过解直角三角形求出结果.【详解】取BD中点O,连接AO,CO.因为AB=AD,所以,又平面平面,所以平面.因此,即为AC与平面所成的角,由于,,所以,又,所以【点睛】本题主要考查直线与平面所成的角,属于基础题型.14、【解析】由复合函数单调性的判断法则及对数函数的真数大于0恒成立,列出不等式组求解即可得答案.【详解】解:因为,函数在区间内为减函数,所以有,解得,所以实数a的取值范围为,故答案为:.15、【解析】由题意函数有两个零点可得,得,令与,作出函数与的图象如图所示:由图可知,函数有且只有两个零点,则实数的取值范围是.故答案为:.【点睛】本题考查分段函数的应用,函数零点的判断等知识,解题时要灵活应用数形结合思想16、【解析】将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变得到,再将图象向右平移个单位,得到,即,其图象关于原点对称.∴,,又∴故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)是奇函数,证明见解析.【解析】(1)根据,代入计算可得的值,即可求出函数的解析式,再代入计算可得;(2)首先求出函数的定义域,再计算即可判断;【详解】解:(1)因为,且.所以解得,所以所以(2)由(1)可得.因为函数的定义域为,关于原点对称且,所以是奇函数.18、(1);(2).【解析】(1)求出集合A和B,根据并集的计算方法计算即可;(2)求出,分B为空集和不为空集讨论即可.【小问1详解】,当时,,∴;【小问2详解】{或x>4},当时,,,解得a<1;当时,若,则解得.综上,实数的取值范围为.19、(1)A产品的利润y关于投资x的函数解析式为:;B产品的利润y关于投资x的函数解析式为:.(2)①万元;②当投入B产品的资金为万元,投入A产品的资金为万元,该企业获得的总利润最大,其最大利润为万元.【解析】(1)利用待定系数法,结合函数图象上特殊点,运用代入法进行求解即可;(2)①:利用代入法进行求解即可;②利用换元法,结合二次函数的单调性进行求解即可.【小问1详解】因为A产品的利润y与投资x成正比,所以设,由函数图象可知,当时,,所以有,所以;因为B产品的利润y与投资x的算术平方根成正比,所以设,由函数图象可知:当时,,所以有,所以;【小问2详解】①:将200万元资金平均投入两种产品的生产,所以A产品的利润为,B产品的利润为,所以获得总利润为万元;②:设投入B产品的资金为万元,则投入A产品的资金为万元,设企业获得的总利润为万元,所以,令,所以,当时,即当时,有最大值,最大值为,所以当投入B产品的资金为万元,投入A产品的资金为万元,该企业获得的总利润最大,其最大利润为万元.20、(1)(2)【解析】(1)分别求出集合,再求并集即可.(2)分别求出集合和的补集,它们的交集不为空集,列出不等式求解.【详解】(1)当时,的解为或(2)a的取值范围为21、(1);(2);(3)存在,.【解析】(1)根据为上的奇函数,得到,再由时,,设时,则代入求解.(2)设,易知在上单调递减,则,则,是方程的两个不等正根求解(3)设为的一个“罗尔区间”,且,同号,若,由(2)可得,若,同理可求,得到,再根据集合恰含有2个元素,转化为与的图象有两个交点,即方程在内恰有一个实数根,方程,在内恰有一个实数根求解..【详解】(1)因为为上的奇函数,∴,又当时,,所以当时,,所以,所以.(2)设,∵在上单调递减,∴,即,是方程的两个不等正根,∵,∴,∴在内的“罗尔区
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 比身高听评课记录
- 《江南》听评课记录
- 山西省太原市小店区2024年一级造价工程师《土建计量》考前冲刺试题含解析
- 安全生产月基本知识培训302
- CAXA电子图版学习课件
- 《中华人民共和国行》课件
- 《不等式的性质公开》课件
- XX镇有关计划生育“两包一挂”实施办法
- 化工泵安装施工方案
- 职高班主任开学计划
- 预防校园欺凌主题班会课件(共36张课件)
- 幼儿园教学课件《如果地球被我们吃掉了》课件
- 操作系统填空题
- DB21∕T 1605-2008 双条杉天牛检疫技术规程
- 失禁性皮炎的护理--PPT课件
- 污水处理A2O工艺调试详解
- 《幼儿园中班第一学期家长会》 PPT课件
- 第9章财政监督
- 疫苗接种知识PPT课件
- 护理伦理学 绪论 高校版
- 防坠落装置技术规范书
评论
0/150
提交评论