版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省双鸭山市尖山区一中2025届高二上数学期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等腰中,在线段斜边上任取一点,则线段的长度大于的长度的概率()A B.C. D.2.现要完成下列两项调查:①从某社区70户高收入家庭、335户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.这两项调查宜采用的抽样方法是()A①简单随机抽样,②分层抽样 B.①分层抽样,②简单随机抽样C.①②都用简单随机抽样 D.①②都用分层抽样3.我国古代的数学名著《九章算术》中有“衰分问题”:今有女子善织,日自倍,五日织五尺,问次日织几问?其意为:一女子每天织布的尺数是前一天的2倍,5天共织布5尺,请问第二天织布的尺数是()A. B.C. D.4.已知双曲线,其中一条渐近线与x轴的夹角为,则双曲线的渐近线方程是()A. B.C. D.5.在三棱锥中,平面;记直线与直线所成的角为,直线与平面所成的角为,二面角的平面角为,则()A. B.C. D.6.已知数列的前n项和为,,,则=()A. B.C. D.7.空间直角坐标系中、、)、,其中,,,,已知平面平面,则平面与平面间的距离为()A. B.C. D.8.已知抛物线的焦点为,抛物线的焦点为,点在上,且,则直线的斜率为A. B.C. D.9.已知椭圆:的离心率为,则实数()A. B.C. D.10.抛物线的焦点到双曲线的渐近线的距离是()A. B.C.1 D.11.酒驾是严重危害交通安全的违法行为.根据国家有关规定:100血液中酒精含量在20~80之间为酒后驾车,80及以上为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1.2,且在停止喝酒以后,他血液中的酒精含量会以每小时20%的速度减少,若他想要在不违法的情况下驾驶汽车,则至少需经过的小时数约为()(参考数据:,)A.6 B.7C.8 D.912.设,分别是双曲线:的左、右焦点,过点作的一条渐近线的垂线,垂足为,,为坐标原点,则双曲线的离心率为()A. B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线,左右焦点分别为,若过右焦点的直线与以线段为直径的圆相切,且与双曲线在第二象限交于点,且轴,则双曲线的离心率是_________.14.若,则与向量同方向的单位向量的坐标为____________.15.已知圆,圆与轴相切,与圆外切,且圆心在直线上,则圆的标准方程为________16.已知直线和直线垂直,则实数___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为的中点(1)求证:平面;(2)若,求平面与平面的夹角大小18.(12分)设椭圆:()的离心率为,椭圆上一点到左右两个焦点、的距离之和是4.(1)求椭圆的方程;(2)已知过的直线与椭圆交于、两点,且两点与左右顶点不重合,若,求四边形面积的最大值.19.(12分)已知函数()(1)讨论函数的单调区间;(2)若有两个极值点,(),且不等式恒成立,求实数m的取值范围20.(12分)在平面直角坐标系中,动点,满足,记点的轨迹为(1)请说明是什么曲线,并写出它的方程;(2)设不过原点且斜率为的直线与交于不同的两点,,线段的中点为,直线与交于两点,,请判断与的关系,并证明你的结论21.(12分)已知函数(1)当时,求函数的单调区间;(2)当时,若关于x的不等式恒成立,试求a的取值范围22.(10分)已知等差数列的前项和为,满足,.(1)求数列的通项公式与前项和;(2)求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用几何概型的长度比值,即可计算.【详解】设直角边长,斜边,则线段的长度大于的长度的概率.故选:C2、B【解析】通过简单随机抽样和分层抽样的定义辨析得到选项【详解】在①中,由于购买能力与收入有关,应该采用分层抽样;在②中,由于个体没有明显差别,而且数目较少,应该采用简单随机抽样故选:B3、C【解析】根据等比数列求和公式求出首项即可得解.【详解】由题可得该女子每天织布的尺数成等比数列,设其首项为,公比为,则,解得所以第二天织布的尺数为.故选:C4、C【解析】由已知条件计算可得,即得到结果.【详解】由双曲线,可知渐近线方程为,又双曲线的一条渐近线与x轴的夹角为,故,即渐近线方程为.故选:C5、A【解析】先得到三棱锥的每一个面都是直角三角形,然后可得与平面所成的角,二面角的平面角,在直角三角形中算出他们的余弦值,利用向量法计算直线与直线所成的角为的余弦值,然后比较大小.【详解】令,由平面,且平面,又,,面三棱锥的每一个面都是直角三角形.与平面所成的角,二面角的平面角,由已知可得,,,又,则所以,又均为锐角,故选:A.6、D【解析】利用公式计算得到,得到答案【详解】由已知得,即,而,所以故选:D7、A【解析】由已知得,,,设向量与向量、都垂直,由向量垂直的坐标运算可求得,再由平面平行和距离公式计算可得选项.【详解】解:由已知得,,,设向量与向量、都垂直,则,即,取,,又平面平面,则平面与平面间的距离为,故选:A.8、B【解析】根据抛物线的定义,求得p的值,即可得抛物线,的标准方程,求得抛物线的焦点坐标后,再根据斜率公式求解.【详解】因为,所以,解得,所以直线的斜率为.故选B.【点睛】本题考查了抛物线的定义的应用,考查了抛物线的简单性质,涉及了直线的斜率公式;抛物线上的点到焦点的距离等于其到准线的距离;解题过程中注意焦点的位置.9、C【解析】根据题意,先求得的值,代入离心率公式,即可得答案.【详解】因为,所以所以,解得.故选:C10、B【解析】先确定抛物线的焦点坐标,和双曲线的渐近线方程,再由点到直线的距离公式即可求出结果.【详解】因为抛物线的焦点坐标为,双曲线的渐近线方程为,由点到直线的距离公式可得.故选:B11、C【解析】根据题意列出不等式,利用指对数幂的互化和对数的运算公式即可解出不等式.【详解】设该驾驶员至少需经过x个小时才能驾驶汽车,则,所以,则,所以该驾驶员至少需经过约8个小时才能驾驶汽车.故选:C12、D【解析】先求过右焦点且与渐近线垂直的直线方程,与渐近线方程联立求点P的坐标,再用两点间的距离公式,结合已知条件,得到关于a,c的关系式.【详解】双曲线的左右焦点分别为、,一条渐近线方程为,过与这条渐近线垂直的直线方程为,由,得到点P的坐标为,又因为,所以,所以,所以.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意可得,进而可得,再根据,可得再根据双曲线的定义,即可得到,进而求出结果.【详解】如图所示:设切点为,所以,又轴所以,所以,由,,所以又,所以故答案为:.14、【解析】由空间向量的模的计算求得向量的模,再由单位向量的定义求得答案.【详解】解:因为,所以,所以与向量同方向的单位向量的坐标为,故答案为:.15、【解析】根据题干求得圆的圆心及半径,再利用圆与轴相切,与圆外切,且圆心在直线上确定圆的圆心及半径.【详解】圆的标准方程为,所以圆心,半径为由圆心在直线上,可设因为与轴相切,与圆外切,于是圆的半径为,从而,解得因此,圆的标准方程为故答案为:【点睛】判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法.两圆相切注意讨论内切外切两种情况.16、【解析】根据两条直线相互垂直的条件列方程,解方程求得m的值.【详解】由于两条直线垂直,故,解得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)取中点,连结,证得,利用线面平行的判定定理,即可求解;(2)以为原点,以方面为轴,以方向为轴,以方向为轴,建立坐标系,利用平面和平面的法向量的夹角公式,即可求解【小问1详解】取中点,连结,由,,则,又由平面,平面,所以平面.【小问2详解】以为原点,以方面为轴,以方向为轴,以方向为轴,建立坐标系,可得,,,,,则,,设平面的一个法向量为,则,即,令,则又平面的法向量为;则,所以平面与平面所成的锐二面角为.18、(1);(2)6.【解析】(1)本小题根据题意先求,,,再求椭圆的标准方程;(2)本小题先设过的直线的方程,再根据题意表示出四边形的面积,最后求最值即可.【详解】解:(1)∵椭圆上一点到左右两个焦点、的距离之和是4,∴即,∵,∴,又∵,∴.∴椭圆的标准方程为;(2)设点、的坐标为,,因为直线过点,所以可设直线方程为,联立方程,消去可得:,化简整理得,其中,所以,,因为,所以四边形是平行四边形,设平面四边形的面积为,则,设,则(),所以,因为,所以,,所以四边形面积的最大值为6.【点睛】本题考查椭圆的标准方程,相交弦等问题,是偏难题.19、(1)时,在递增,时,在递减,在递增(2)【解析】(1)求出函数导数,分和两种情况讨论可得单调性;(2)根据导数可得有两个极值点等价于有两不等实根,则可得出,进而得出,可得恒成立,等价于,构造函数求出最小值即可.【小问1详解】的定义域是,,①时,,则,在递增;②时,令,解得,令,解得,故在递减,在递增.综上,时,在递增时,在递减,在递增【小问2详解】,定义域是,有2个极值点,,即,则有2个不相等实数根,,∴,,解得,且,,从而,由不等式恒成立,得恒成立,令,当时,恒成立,故函数在上单调递减,∴,故实数m的取值范围是【点睛】关键点睛:本题考查利用导数解决不等式的恒成立问题,解题的关键是将有两个极值点等价于有两不等实根,以此求出,再将不等式恒成立转化为求的最小值.20、(1)椭圆,(2),证明见解析【解析】(1)结合椭圆第一定义直接判断即可求出的轨迹为;(2)设直线的方程为,,,联立椭圆方程,写出韦达定理;由中点公式求出点,进而得出直线方程,联立椭圆方程求出,结合弦长公式可求,可转化为,结合韦达定理可化简,进而得证.【小问1详解】设,,则因为,满足,即动点表示以点,为左、右焦点,长轴长为4,焦距为的椭圆,其轨迹的方程为;【小问2详解】可以判断出,下面进行证明:设直线的方程为,,,由方程组,得①,方程①判别式为,由,即,解得且由①得,,所以点坐标为,直线方程为,由方程组,得,,所以又所以.21、(1)的减区间为,增区间为(2)【解析】(1)利用导数求得的单调区间.(2)利用分离参数法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《电气火灾》课件
- 《研究生培养与管理》课件
- 《服务行业的戴尔》课件
- 广东省梅州市五华县华城镇初级中学-主题班会-防性侵【课件】
- 单位管理制度集合大合集【人事管理篇】
- 单位管理制度集粹汇编【人力资源管理篇】十篇
- 单位管理制度汇编大合集【人力资源管理】
- 单位管理制度合并汇编人事管理十篇
- 单位管理制度分享汇编【职工管理篇】
- 高中语文常见的病句类型及其辨析
- 维也纳外交关系公约-VIENNA-CONVENTION-ON-DIPLOMATIC-RELATIONS
- (完整版)混凝土公司组织机构框图
- 煤气化工艺路线的比较
- 宝石学 第11章 有机宝石.
- SAP-按销售订单采购生产系统实现之配置和操作
- 《安宁疗护培训》PPT课件
- 第5章煤炭气化技术
- 全口义齿修复汇总
- 公墓施工组织设计
- 业余无线电台设置(变更)申请表
- 担保公司员工守则(共18页)
评论
0/150
提交评论