版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省肇庆联盟校2025届数学高一上期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则,()A.4 B.3C. D.2.已知命题:,总有,则命题的否定为()A.,使得 B.,使得C.,总有 D.,总有3.如图,在正四棱柱中底面是正方形的直棱柱,侧棱,,则二面角的大小为()A.30° B.45°C.60° D.90°4.函数的单调递增区间是A. B.C. D.5.若,则终边在()A.第一、三象限 B.第一、二象限C.第二、四象限 D.第三、四象限6.方程的根所在的区间为A. B.C. D.7.设则的值A.9 B.C.27 D.8.已知为定义在上的偶函数,,且当时,单调递增,则不等式的解集为()A. B.C. D.9.若两平行直线与之间的距离是,则A.0 B.1C.-2 D.-110.已知,,,则的边上的高线所在的直线方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图所示,正方体的棱长为,分别是棱,的中点,过直线的平面分别与棱.交于,设,,给出以下四个命题:①平面平面;②当且仅当时,四边形的面积最小;③四边形周长,是单调函数;④四棱锥的体积为常函数;以上命题中真命题的序号为___________.12.若,,则等于_________.13.在对某工厂甲乙两车间某零件尺寸的调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了甲车间10个零件,其尺寸的平均数和方差分别为12和4.5,抽取了乙车间30个零件,其平均数和方差分别为16和3.5,则该工厂这种零件的方差估计值为___________.(精确到0.1)14.直线l与平面α所成角为60°,l∩α=A,则m与l所成角的取值范围是_______.15.下列说法中,所有正确说法的序号是__________①终边落在轴上角的集合是;②函数图象一个对称中心是;③函数在第一象限是增函数;④为了得到函数的图象,只需把函数的图象向右平移个单位长度16.___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数.(1)求,;(2)求函数在上的最大值与最小值.18.已知函数(1)求在上的增区间(2)求在闭区间上的最大值和最小值19.已知甲乙两人的投篮命中率分别为,如果这两人每人投篮一次,求:(1)两人都命中的概率;(2)两人中恰有一人命中的概率.20.现有三个条件:①对任意的都有;②不等式的解集为;③函数的图象过点.请你在上述三个条件中任选两个补充到下面的问题中,并求解(请将所选条件的序号填写在答题纸指定位置)已知二次函数,且满足________(填所选条件的序号).(1)求函数的解析式;(2)设,若函数在区间上的最小值为3,求实数m的值.21.某工厂利用辐射对食品进行灭菌消毒,先准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系式为p=k4x+5(0≤x≤15),若距离为10km时,测算宿舍建造费用为20万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需10万元,铺设路面每千米成本为4万元.设(1)求fx(2)宿舍应建在离工厂多远处,可使总费用最小,并求fx
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据分段函数解析式代入计算可得;【详解】解:因为,,所以,所以故选:D2、B【解析】根据全称命题的否定性质进行判断即可.【详解】因为全称命题的否定是特称命题,所以命题的否定为,使得,故选:B3、C【解析】连接AC,BD,交点为O,连接,则即为二面角的平面角,再求解即可.【详解】解:连接AC,BD,交点为O,连接,∵,,,∴平面,即即为二面角的平面角,∵四棱柱中底面是正方形的直棱柱,,,∴,则,∴.故选:C【点睛】本题考查了二面角的平面角的作法,重点考查了运算能力,属基础题.4、D【解析】,选D.5、A【解析】分和讨论可得角的终边所在的象限.【详解】解:因为,所以当时,,其终边在第三象限;当时,,其终边在第一象限.综上,的终边在第一、三象限.故选:A.6、C【解析】令函数,则方程的根即为函数的零点再根据函数零点的判定定理可得函数零点所在区间【详解】令函数,则方程的根即为函数的零点,再由,且,可得函数在上有零点故选C【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题7、C【解析】因为,故,所以,故选C.8、B【解析】根据给定条件,探讨函数的性质,再把不等式等价转化,利用的性质求解作答.【详解】因为定义在上的偶函数,则,即是R上的偶函数,又在上单调递增,则在上单调递减,,即,因此,,平方整理得:,解得,所以原不等式的解集是.故选:B9、C【解析】∵l1∥l2,∴n=-4,l2方程可化为为x+2y-3=0.又由d=,解得m=2或-8(舍去),∴m+n=-2.点睛:两平行线间距离公式是对两平行线方程分别为,,则距离为,要注意两直线方程中的系数要分别相等,否则不好应用此公式求距离10、A【解析】先计算,得到高线的斜率,又高线过点,计算得到答案.【详解】,高线过点∴边上的高线所在的直线方程为,即.故选【点睛】本题考查了高线的计算,利用斜率相乘为是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、①②④【解析】①连接,在正方体中,平面,所以平面平面,所以①是真命题;②连接MN,因为平面,所以,四边形MENF的对角线EF是定值,要使四边形MENF面积最小,只需MN的长最小即可,当M为棱的中点时,即当且仅当时,四边形MENF的面积最小;③因为,所以四边形是菱形,当时,的长度由大变小,当时,的长度由小变大,所以周长,是单调函数,是假命题;④连接,把四棱锥分割成两个小三棱锥,它们以为底,为顶点,因为三角形的面积是个常数,到平面的距离也是一个常数,所以四棱锥的体积为常函数;命题中真命题的序号为①②④考点:面面垂直及几何体体积公式12、【解析】由同角三角函数基本关系求出的值,再由正弦的二倍角公式即可求解.【详解】因为,,所以,所以,故答案为:.13、8【解析】设甲车间数据依次为,乙车间数据依次,根据两个车间的平均数和方差分别求出所有数据之和以及所有数据平方和即可得解.【详解】设甲车间数据依次为,乙车间数据依次,,,所以,,,所以这40个数据平均数,方差=6.75≈6.8.所以可以判定该工厂这种零点的方差估计值为6.8故答案为:6.814、【解析】根据直线l与平面α所成角是直线l与平面α内所有直线成的角中最小的一个,直线l与平面α所成角的范围,即可求出结果【详解】由于直线l与平面α所成角为60°,直线l与平面α所成角是直线l与平面α内所有直线成的角中最小的一个,而异面直线所成角的范围是(0,],直线m在平面α内,且与直线l异面,故m与l所成角的取值范围是.故答案为【点睛】本题考查直线和平面所成的角的定义和范围,判断直线与平面所成角是直线与平面α内所有直线成的角中最小的一个,是解题的关键15、②④【解析】当时,,终边不在轴上,①错误;因为,所以图象的一个对称中心是,②正确;函数的单调性相对区间而言,不能说在象限内单调,③错误;函数的图象向右平移个单位长度,得到的图象,④正确.故填②④16、2【解析】利用换底公式及对数的性质计算可得;【详解】解:.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2),【解析】(1)首先利用两角和的正弦公式及辅助角公式将函数化简,再代入求值即可;(2)由的取值范围求出的范围,再根据正弦函数的性质计算可得;【小问1详解】解:因为所以即,所以,【小问2详解】解:由(1)可知,∵,∴,∴,∴,∴,令,即时取到最大值,,令,即时取到最小值.18、(1),(2)最大值为,的最小值为【解析】(1)由正弦型函数的性质,应用整体代入法有时单调递增求增区间;(2)由已知区间确定的区间,进而求的最大值和最小值【小问1详解】令,得,∴单调递增区间为,由,可令得.令得,所以在上的增区间为,【小问2详解】,.即在区间上的最大值为,最小值为.19、(1)0.56;(2)0.38.【解析】(1)利用相互独立事件概率计算公式,求得两人都命中的概率.(2)利用互斥事件概率公式和相互独立事件概率计算公式,求得恰有一人命中的概率.【详解】记事件A,B分别为“甲投篮命中",“乙投篮命中”,则.(1)“两人都命中”为事件AB,由于A,B相互独立,所以,即两人都命中的概率为0.56.(2)由于互斥且A,B相互独立,所以恰有1人命中概率为.即恰有一人命中的概率为0.38.【点睛】关键点睛:本小题主要考查相互独立事件概率计算,考查互斥事件概率公式,关键在于准确地理解题意和运用公式求解.20、(1);(2).【解析】(1)条件①,求出代入根据恒成立可得;条件②由一元二次不等式解的性质可得;条件③代入可得;分别根据选择①②,①③,②③,均可通过联立方程组可得结果;(2)求出函数的对称轴,将对称轴和区间的端点进行比较,根据函数的单调性列出关于的方程解出即可.【详解】(1)条件①:因为,所以,即对任意的x恒成立,所以,解得.条件②:因为不等式的解集为,所以,即.条件③:函数的图象过点,所以.选择条件①②:,,,此时;选择条件①③:,则,,,此时;选择条件②③:,则,,,此时.(2)由(1)知,其对称轴为,①当,即时,,解得;②当,即时,,解得(舍);③当,即时,,无解.综上所述,所求实数m的值为.【点睛】二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.21、(1)fx=9004x+5【解析】(1)根据距离为10km时,测算宿舍建造费用为20万元,可求k的值,由此,可得f(x)的表达式;(2)fx【详解】解:(1)由题意可知,距离为10km时,测算宿舍建造费用为20万元,则20=k4×
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度乡村旅游用地经营权出租管理协议3篇
- 2024年城市更新项目物业管理费收取与城市风貌改造合同3篇
- 2024中介二手房买卖合同电子版范本3篇
- 2024商业街店铺租赁及夜间经济开发合作合同3篇
- 2024年度农业综合开发担保合同范本(新修订)3篇
- 2024年度高档别墅区物业管理委托合同书3篇
- 2024年度知识产权质押担保合同范本(专业版)3篇
- 2024中金大摩业务交接及分手补偿协议2篇
- 2024年单位部门采购合同(31篇)
- 成都银行2023年年度股东会材料
- 《眼镜学》考试复习重点题库(含答案)
- 工程合同履约管理
- 小儿头皮静脉输液课件
- 中班数学活动小动物排队课件
- 电力电缆高频局放试验报告
- 关于老年综合评估规范与流程
- 高压灭菌锅使用管理制度
- 《行政法与行政诉讼法》考试小抄
- 余热发电工程总施工组织设计方案
- 报联商整合版专题培训课件
- 城乡居民基本养老保险参保登记表
评论
0/150
提交评论