版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏宿迁市高一数学第一学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数则()A.- B.2C.4 D.112.下列每组函数是同一函数的是()A. B.C. D.3.设集合M=,N=,则MN等于A.{0} B.{0,5}C.{0,1,5} D.{0,-1,-5}4.函数部分图象大致为()A. B.C. D.5.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是A.①② B.②③C.③④ D.②④6.下列命题是全称量词命题,且是真命题的为()A.有些四边形的内角和不等于360° B.,C., D.所有能被4整除的数都是偶数7.已知点P3,-4是角α的终边上一点,则sinA.-75C.15 D.8.设和两个集合,定义集合,且,如果,,那么A. B.C. D.9.函数,则下列坐标表示的点一定在函数图像上的是A. B.C. D.10.在一段时间内,若甲去参观市博物馆的概率为0.8,乙去参观市博物馆的概率为0.6,且甲乙两人各自行动.则在这段时间内,甲乙两人至少有一个去参观博物馆的概率是()A.0.48 B.0.32C.0.92 D.0.84二、填空题:本大题共6小题,每小题5分,共30分。11.若函数在区间上单调递增,则实数的取值范围是__________.12.已知函数同时满足以下条件:①定义域为;②值域为;③.试写出一个函数解析式___________.13.已知函数.则函数的最大值和最小值之积为______14.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.明朝科学家徐光启在《农政全书》中用图1描绘了筒车的工作原理.假定在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.如图2,将筒车抽象为一个几何图形(圆),以筒车转轮的中心为原点,过点的水平直线为轴建立如图直角坐标系.已知一个半径为1.6m的筒车按逆时针方向每30s匀速旋转一周,到水面的距离为0.8m.规定:盛水筒对应的点从水中浮现(时的位置)时开始计算时间,且设盛水筒从点运动到点时所经过的时间为(单位:s),且此时点距离水面的高度为(单位:m)(在水面下则为负数),则关于的函数关系式为___________,在水轮转动的任意一圈内,点距水面的高度不低于1.6m的时长为___________s.15.将函数的图象先向下平移1个单位长度,在作关于直线对称的图象,得到函数,则__________.16.在空间直角坐标系中,点在平面上的射影为点,在平面上的射影为点,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设分别是的边上的点,且,,,若记试用表示.18.在某单位的食堂中,食堂每天以元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂某天购进了80斤米粉,以(单位:斤)(其中)表示米粉的需求量,(单位:元)表示利润.(Ⅰ)计算当天米粉需求量的平均数,并直接写出需求量的众数和中位数;(Ⅱ)将表示为的函数;(Ⅲ)根据直方图估计该天食堂利润不少于760元的概率.19.已知如图,在直三棱柱中,,且,是的中点,是的中点,点在直线上.(1)若为中点,求证:平面;(2)证明:20.已知且是上的奇函数,且(1)求的解析式;(2)若不等式对恒成立,求取值范围;(3)把区间等分成份,记等分点的横坐标依次为,,设,记,是否存在正整数,使不等式有解?若存在,求出所有的值,若不存在,说明理由.21.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.求:(1)AD边所在直线的方程;(2)DC边所在直线的方程
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据分段函数的分段条件,先求得,进而求得的值,得到答案.【详解】由题意,函数,可得,所以.故选:C.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的分段条件,代入准确运算是解答的关键,着重考查运算与求解能力.2、C【解析】依次判断每组函数的定义域和对应法则是否相同,可得选项.【详解】A.的定义域为,的定义城为,定义域不同,故A错误;B.的定义域为,的定义域为,定义域不同,故B错误;C.与的定义域都为,,对应法则相同,故C正确;D.的定义域为,的定义域为,定义域不同,故D错误;故选:C【点睛】易错点睛:本题考查判断两个函数是否是同一函数,判断时,注意考虑函数的定义域和对应法则是否完全相同,属于基础题.3、C【解析】,选C.4、A【解析】根据函数的解析式可判断函数为奇函数,再根据函数的零点个数可得正确的选项.【详解】因为,所以为奇函数,图象关于原点对称,故排除B;令,即,解得,即只有一个零点,故排除C,D故选:A5、D【解析】图①的三种视图均相同;图②的正视图与侧视图相同;图③的三种视图均不相同;图④的正视图与侧视图相同.故选D6、D【解析】根据定义分析判断即可.【详解】A和C都是存在量词命题,B是全称量词命题,但其是假命题,如时,,D选项为全称命题且为真命题故选:D.7、A【解析】利用三角函数的定义可求得结果.【详解】由三角函数的定义可得sinα-故选:A.8、D【解析】根据的定义,可求出,,然后即可求出【详解】解:,;∴.故选D.【点睛】考查描述法的定义,指数函数的单调性,正弦函数的值域,属于基础题9、D【解析】因为函数,,所以,所以函数为偶函数,则、均在在函数图像上.故选D考点:函数的奇偶性10、C【解析】根据题意求得甲乙都不去参观博物馆的概率,结合对立事件的概率计算公式,即可求解.【详解】由甲去参观市博物馆的概率为0.8,乙去参观市博物馆的概率为0.6,可得甲乙都不去参观博物馆的概率为,所以甲乙两人至少有一个去参观博物馆的概率是.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】按a值对函数进行分类讨论,再结合函数的性质求解作答.【详解】当时,函数在R上单调递增,即在上递增,则,当时,函数是二次函数,又在上单调递增,由二次函数性质知,,则有,解得,所以实数的取值范围是.故答案为:12、或(答案不唯一)【解析】由条件知,函数是定义在R上的偶函数且值域为,可以写出若干符合条件的函数.【详解】函数定义域为R,值域为且为偶函数,满足题意的函数解析式可以为:或【点睛】本题主要考查了函数的定义域、值域、奇偶性以,属于中档题.13、80【解析】根据二次函数的性质直接计算可得.【详解】因为,所以当时,,当时,,所以最大值和最小值之积为.故答案为:8014、①.②.10【解析】根据给定信息,求出以Ox为始边,OP为终边的角,求出点P的纵坐标即可列出函数关系,再解不等式作答.【详解】依题意,点到x轴距离为0.8m,而,则,从点经s运动到点所转过的角为,因此,以Ox为始边,OP为终边的角为,点P的纵坐标为,于是得点距离水面的高度,由得:,而,即,解得,对于k的每个取值,,所以关于的函数关系式为,水轮转动的任意一圈内,点距水面的高度不低于1.6m的时长为10s.故答案为:;10【点睛】关键点睛:涉及三角函数实际应用问题,探求动点坐标,找出该点所在射线为终边对应的角是关键,特别注意,始边是x轴非负半轴.15、5【解析】利用平移变换和反函数的定义得到的解析式,进而得解.【详解】函数的图象先向下平移1个单位长度得到作关于直线对称的图象,即的反函数,则,,即,故答案为:5【点睛】关键点点睛:本题考查图像的平移变换和反函数的应用,利用反函数的性质求出的解析式是解题的关键,属于基础题.16、【解析】因为点在平面上的射影为点,在平面上的射影为点,所以由两点间距离公式可得,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、;;.【解析】根据平面向量的线性运算,即可容易求得结果.【详解】由题意可得,,,,,,所以.【点睛】本题考查利用基向量表示平面向量,涉及平面向量的线性运算,属基础题.18、(1)平均数为75.5,众数为75,中位数为75.(2).(3)该天食堂利润不少于760元的概率为0.65.【解析】由频率分布直方图的数值计算可得平均数,众数,中位数由题意,当时,求出利润,当时,求出利润,由此能求出关于的函数解析式设利润不少于元为事件,利润不少于元时,即,再根据直方图利用概率计算公式求出对应的概率【详解】(Ⅰ)由频率分布直方图知,故中位数位于(70.,80)设为x,则(x-70)所以平均数为75.5,众数为75,中位数为75.(Ⅱ)一斤米粉的售价是元.当时,当时,故(Ⅲ)设利润不少于760元为事件,利润不少于760元时,即.解得,即.由直方图可知,当时,故该天食堂利润不少于760元的概率为0.65.【点睛】本题主要考查了样本估计总体和事件与概率,只要能读懂条形统计图,然后进行计算即可,较为基础19、(1)见解析;(2)见解析【解析】(1)取中点为,连接,,首先说明四边形是平行四边形,即可得,根据线面平行判定定理即可得结果;(2)连接,利用得到,再通过平面得到,进而平面,即可得最后结果.【详解】(1)证明:取中点为,连接,,在中,,又所以,,即四边形是平行四边形.故,又平面,平面,所以,平面.(2)证明:连接,在正方形中,,所以,与互余,故,又,,,所以,平面,又平面,故又,所以平面又平面,所以【点睛】本题主要考查了线面平行的判定,通过线线垂直线面垂直线面垂直的过程,属于中档题.在证明线面平行中,常见的方法有以下几种:1、利用三角形中位线;2、构造平行四边形得到线线平行;3、构造面面平行等.20、(1);(2);(3)存在,正整数或2.【解析】(1)根据,,即可求出的值,从而可求函数的解析式;(2)根据函数的奇偶性和单调性由题意可得到恒成立,然后通过分类讨论,根据二次不等式恒成立问题的解决方法即可求出答案;(3)设等分点的横坐标为,.首先根据,可得到函数的图象关于点对称,从而可得到,;进而可求出;再根据,从而只需求即可.【小问1详解】∵是上的奇函数,∴,由,可得,,∵,∴,,所以.又,所以为奇函数.所以.【小问2详解】因为,所以在上单调递增,又为上的奇函数,所以由,得,所以,即恒成立,当时,不等式为不能恒成立,故不满足题意;当时,要满足题意,需,解得,所以实数的取值范围为.【小问3详解】把区间等分成份,则等分点的横坐标为,,又,为奇函数,所以的图象关于点对称,所以,,所以,因为,所以,即.故存在正整数或2,使不等式有解.21、(1);(2)【解析】分析:(1)先由AD与AB垂直,求得AD的斜率,再由点斜式求得其直线方程;(2)根据矩形特点可以设DC的直线方程为,然后由点到直线的距离得出,就可以求出m的值,即可求出结果.详解:(1)由题意:ABCD为矩形,则AB⊥AD,又AB边所在的直线方程为:x-3y-6=0,所以AD所在直线的斜率kAD=-3,而点T(-1,1)在直线AD上所以AD边所在直线的方程为:3x+y+2=0.(2)方法一:由ABCD为矩形可得,AB∥DC,所以设直线CD的方程为x-3y+m=0.由矩形性质可知点M到AB、CD的距离相等所以=,解得m=2或m=-6(舍)所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度出租车座套供应周期与质量保证合同
- 电咖啡机用空咖啡胶囊市场发展现状调查及供需格局分析预测报告
- 椎间盘修复用医疗设备市场需求与消费特点分析
- 2024年度机械设备维修与租赁合同
- 轧线机电池制造机械市场发展现状调查及供需格局分析预测报告
- 理发座椅市场需求与消费特点分析
- 2024年度卫星通信技术应用合同
- 2024年度实验室搬迁及运输合同
- 2024年度房屋租赁合同(东莞版)
- 数据管理用计算机市场发展现状调查及供需格局分析预测报告
- 补偿收缩混凝土应用技术规程JGJT1782009
- 机井资料表格(共9页)
- 豆类食物营养成分表
- 造纸及纸制品行业企业风险分级管控体系实施指南(DB37T 3149—2018)
- 农药英语词汇
- 第十二讲区域变质岩的鉴定与描述(1)
- 8D报告(完整详解版)
- 敏捷开发介绍(精选干货)
- 三类医疗器械医疗机构规章管理制度
- 上海版牛津英语5A M2U1 Grandparents教学案例
- (完整版)生育服务证办理承诺书
评论
0/150
提交评论