版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省南通市如东中学、栟茶中学高二数学第一学期期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,,为所在平面上任意一点,则的最小值为()A.1 B.C.-1 D.-22.过点且与直线垂直的直线方程是()A. B.C. D.3.若圆与直线相切,则()A.3 B.或3C. D.或4.曲线在点处的切线过点,则实数()A. B.0C.1 D.25.已知直线,,若,则实数()A. B.C.1 D.26.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B.C. D.7.在空间直角坐标系中,,,若∥,则x的值为()A.3 B.6C.5 D.48.已知双曲线C的离心率为,,是C的两个焦点,P为C上一点,,若△的面积为,则双曲线C的实轴长为()A.1 B.2C.4 D.69.已知双曲线C1的一条渐近线方程为y=kx,离心率为e1,双曲线C2的一条渐近线方程为y=x,离心率为e2,且双曲线C1、C2在第一象限交于点(1,1),则=()A.|k| B.C.1 D.210.已知,则条件“”是条件“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件.11.我国新冠肺炎疫情防控进入常态化,各地有序进行疫苗接种工作,下面是我国甲、乙两地连续11天的疫苗接种指数折线图,根据该折线图,下列说法不正确的是()A.这11天甲地指数和乙地指数均有增有减B.第3天至第11天,甲地指数和乙地指数都超过80%C.在这11天期间,乙地指数的增量大于甲地指数的增量D.第9天至第11天,乙地指数的增量大于甲地指数的增量12.“五一”期间,甲、乙、丙三个大学生外出旅游,已知一人去北京,一人去两安,一人去云南.回来后,三人对去向作了如下陈述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事实是甲、乙、丙三人陈述都只对了一半(关于去向的地点仅对一个).根据以上信息,可判断下面说法中正确的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南二、填空题:本题共4小题,每小题5分,共20分。13.如图三角形数阵:132456109871112131415……按照自上而下,自左而右的顺序,位于第行的第列,则______.14.两条平行直线与的距离是__________15.过点作圆的两条切线,切点为A,B,则直线的一般式方程为___________.16.函数的图象在点处的切线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)“绿水青山就是金山银山”,中国一直践行创新、协调、绿色、开放、共享的发展理念,着力促进经济实现高质量发展,决心走绿色、低碳、可持续发展之路.新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向工业部表示,到2025年我国新能源汽车销量占总销量将达20%以上.2021年,某集团以20亿元收购某品牌新能源汽车制造企业,并计划投资30亿元来发展该品牌.2021年该品牌汽车的销售量为10万辆,每辆车的平均销售利润为3000元.据专家预测,以后每年销售量比上一年增加10万辆,每辆车的平均销售利润比上一年减少10%(1)若把2021年看作第一年,则第n年的销售利润为多少亿元?(2)到2027年年底,该集团能否通过该品牌汽车实现盈利?(实现盈利即销售利润超过总投资,参考数据:,,)18.(12分)已知椭圆的焦距为,左、右焦点分别为,为椭圆上一点,且轴,,为垂足,为坐标原点,且(1)求椭圆的标准方程;(2)过椭圆的右焦点的直线(斜率不为)与椭圆交于两点,为轴正半轴上一点,且,求点的坐标19.(12分)已知圆(1)若一直线被圆C所截得的弦的中点为,求该直线的方程;(2)设直线与圆C交于A,B两点,把的面积S表示为m的函数,并求S的最大值20.(12分)如图,已知三棱柱的侧棱与底面垂直,,,和分别是和的中点,点在直线上,且.(1)证明:无论取何值,总有;(2)是否存在点,使得平面与平面所成角为?若存在,试确定点的位置;若不存在,请说明理由.21.(12分)在①,②这两个条件中任选一个,补充在下面的问题中,并作答.设数列的前项和为,且__________.(1)求数列的通项公式;(2)若,求数列的前项和.22.(10分)某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量x吨收取的污水处理费y元,运行程序如图所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)请写出y与x的函数关系式;(2)求排放污水150吨的污水处理费用.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】以为建立平面直角坐标系,设,把向量的数量积用坐标表示后可得最小值【详解】如图,以为建立平面直角坐标系,则,设,,,,,∴,∴当时,取得最小值故选:C【点睛】本题考查向量的数量积,解题方法是建立平面直角坐标系,把向量的数量积转化为坐标表示2、C【解析】根据两直线垂直时斜率乘积为,可以直接求出所求直线的斜率,再根据点斜式求出直线方程,最后化成一般式方程即可.【详解】因为直线的斜率为,故所求直线的斜率等于,所求直线的方程为,即,故选:C3、B【解析】根据圆与与直线相切,利用圆心到直线的距离等于半径求解.【详解】圆的标准方程为:,则圆心为,半径为,因为圆与与直线相切,所以圆心到直线的距离等于半径,即,解得或,故选:B4、A【解析】由导数的几何意义得切线方程为,进而得.【详解】解:因为,,,所以,切线方程为,因为切线过点,所以,解得故选:A5、D【解析】根据两条直线的斜率相等可得结果.【详解】因为直线,,且,所以,故选:D.6、C【解析】首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.7、D【解析】依题意可得,即可得到方程组,解得即可;【详解】解:依题意,即,所以,解得故选:D8、C【解析】由已知条件可得,,,再由余弦定理得,进而求其正弦值,最后利用三角形面积公式列方程求参数a,即可知双曲线C的实轴长.【详解】由题意知,点P在右支上,则,又,∴,,又,∴,则在△中,,∴,故,解得,∴实轴长为,故选:C.9、C【解析】根据渐近线方程设出双曲线方程,再由过点,可知双曲线方程,从而可求离心率.【详解】由题,设双曲线的方程为,又因为其过,且可知,不妨设,代入,得,所以双曲线的方程为,所以,同理可得双曲线的方程为,所以可得,所以,当时,结论依然成立.故选:C10、A【解析】若命题,则p是q的充分不必要条件,q是p的必要不充分条件【详解】因为,所以,所以.故选:A11、C【解析】由折线图逐项分析得到答案.【详解】对于选项A,从折线图中可以直接观察出甲地和乙地的指数有增有减,故选项A正确;对于选项B,从第3天至第11天,甲地指数和乙地指数都超过80%,故选项B正确;对于选项C,从折线图上可以看出这11天甲的增量大于乙的增量,故选项C错误;对于选项D,从折线图上可以看出第9天至第11天,乙地指数的增量大于甲地指数的增量,故D正确;故选:C.12、D【解析】根据题意,先假设甲去了北京正确,则可分析其他人的陈述是否符合题意,再假设乙去西安正确,分析其他人的陈述是否符合题意,即可得答案.【详解】由题意得,甲、乙、丙三人的陈述都只对了一半,假设甲去了北京正确,对于甲的陈述:则乙去西安错误,则乙去了云南;对于乙的陈述:甲去了西安错误,则丙去了北京正确;对于丙的陈述:甲去了云南错误,乙去了北京也错误,故假设错误.假设乙去了西安正确,对于甲的陈述:则甲去了北京错误,则甲去了云南;对于乙的陈述:甲去了西安错误,则丙去了北京正确;对于丙的陈述:甲去了云南正确,乙去了北京错误,此种假设满足题意,故甲去了云南.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意可知到第行结束一共有个数字,由此可知在第行;又由图可知,奇数行从左到右是从小到大排列,偶数行从左到右是从大到小排列,第行个数字从大到小排列,由此可知在到数第列,据此即可求出,进而求出结果.【详解】由图可知,第1行有1个数字,第2行有2个数字,第2行有3个数字,……第行有个数字,由此规律可知,到第行结束一共有个数字;又当时,,所以第行结束一共有个数字;当时,,所以在第行,故;由图可知,奇数行从左到右是从小到大排列,偶数行从左到右是从大到小排列,第行是偶数行,共个数字,从大到小排列,所以在倒数第列,所以,所以.故答案为:.14、5【解析】根据两平行直线,可求得a值,根据两平行线间距离公式,即可得答案.【详解】因为两平行直线与,所以,解得,所以两平行线的距离.故答案为:515、【解析】已知圆的圆心,点在以为直径的圆上,两圆相减就是直线的方程.【详解】,圆心,点在以为直径的圆上,,所以圆心是,以为直径的圆的圆的方程是,直线是两圆相交的公共弦所在直线,所以两圆相减就是直线的方程,,所以直线的一般式方程为.故答案为:【点睛】结论点睛:过圆外一点引圆的切线,那么以圆心和圆外一点连线段为直径的圆与已知圆相减,就是切点所在直线方程,或是两圆相交,两圆相减,就是公共弦所在直线方程.16、【解析】求出、的值,利用点斜式可得出所求切线的方程.【详解】因为,则,所以,,,故所求切线方程为,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)亿元(2)该集团能通过该品牌汽车实现盈利【解析】(1)由题意可求得第n年的销售量,第n年每辆车的平均销售利润,从而可求出第n年的销售利润,(2)利用错位相减法求出到2027年年底销售利润总和,再与总投资额比较即可【小问1详解】设第n年的销售量为万辆,则该汽车的年销售量构成首项为10,公差为10的等差数列,所以,设第n年每辆车的平均销售利润为元,则每辆汽车的平均销售利润构成首项为3000,公比为0.9的等比数列,所以,记第n年的销售利润为,则万元;即第n年的销售利润为亿元【小问2详解】到2027年年底,设销售利润总和为S亿元,则①,②,①﹣②得亿元,而总投资为亿元,因为,则到2027年年底,该集团能通过该品牌汽车实现盈利18、(1)(2)【解析】(1)利用△∽△构造齐次方程,求出离心率,再利用焦距即可求出椭圆方程;(2)将直线方程与椭圆方程联立利用韦达定理求出和,利用几何关系可知,即可得,将韦达定理代入化简即可求得点坐标.【小问1详解】∵椭圆的焦距为,∴,即,轴,∴,则,由,,则△∽△,∴,即,整理得,即,解得或(舍去)∴,∴,则椭圆的标准方程为,【小问2详解】设直线的方程为,且,将直线方程与椭圆方程联立得,,则,,∵,∴,∴,∴,∴,即.19、(1)(2),最大值为.【解析】(1)利用垂径定理求出斜率,即可求出直线的方程;(2)利用几何法表示出弦长与d的关系,利用基本不等式求出的面积S的最大值【小问1详解】圆化为标准方程为:.则.设所求的直线为m.由圆的几何性质可知:,所以,所以所求的直线为:,即.【小问2详解】设圆心C到直线l的距离为d,则,且,所以因为直线与圆C交于A,B两点,所以,解得:且.而的面积:因为所以(其中时等号成立).所以S的最大值为.20、(1)证明见解析;(2)不存在,理由见解析.【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,计算得出,即可得出结论;(2)计算出平面的一个法向量,利用空间向量法可得出关于的方程,即可得出结论.【详解】(1)因为平面,,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、,,,所以,,则,因此,无论取何值,总有;(2),设平面的法向量为,则,取,则,,所以,平面的一个法向量为,易知平面的一个法向量为,由题意可得,整理可得,,此方程无解,因此,不存在点,使得平面与平面所成的角为.21、(1)答案不唯一,具体见解析(2)答案不唯一,具体见解析【解析】(1)若选①:根据,利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 洛阳商业职业学院《材料科学基础(Ⅰ)》2023-2024学年第一学期期末试卷
- 鲁东大学《设计素描》2023-2024学年第一学期期末试卷
- 泸州医疗器械职业学院《数据新闻与信息可视化》2023-2024学年第一学期期末试卷
- 2025年智慧城市建设中停车场租赁与智能化改造合同3篇
- 2025年版教育培训机构销售合同中英对照翻译与品牌建设
- 辽宁中医药大学《蒙台梭利教育》2023-2024学年第一学期期末试卷
- 辽宁医药职业学院《排水管道工程》2023-2024学年第一学期期末试卷
- 辽宁体育运动职业技术学院《木材保护与改性》2023-2024学年第一学期期末试卷
- 辽宁科技学院《商业计划书撰写》2023-2024学年第一学期期末试卷
- 2025年上半年邢台清河县事业单位招考(120人)易考易错模拟试题(共500题)试卷后附参考答案
- 课题申报书:大中小学铸牢中华民族共同体意识教育一体化研究
- 岩土工程勘察课件0岩土工程勘察
- 《肾上腺肿瘤》课件
- 2024-2030年中国典当行业发展前景预测及融资策略分析报告
- 《乘用车越野性能主观评价方法》
- 幼师个人成长发展规划
- 2024-2025学年北师大版高二上学期期末英语试题及解答参考
- 批发面包采购合同范本
- 乘风化麟 蛇我其谁 2025XX集团年终总结暨颁奖盛典
- 2024年大数据分析公司与中国政府合作协议
- 一年级数学(上)计算题专项练习汇编
评论
0/150
提交评论