期末压轴题型专练(解答题30题)(学生版)3_第1页
期末压轴题型专练(解答题30题)(学生版)3_第2页
期末压轴题型专练(解答题30题)(学生版)3_第3页
期末压轴题型专练(解答题30题)(学生版)3_第4页
期末压轴题型专练(解答题30题)(学生版)3_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

20232024学年人教版数学八年级上册期末压轴题型专练(解答题30题)试题满分:150分考试时间:120分钟试卷难度:0.39试题说明:精选各地名校期中期末真题中难度题目,对人教版八年级上册1115章知识点内容强化巩固,优选30道解答题,结合易错,常考类题型着重复习,进一步提升学生的解题技巧,减少失误,优化方法。加强几何与计算的综合能力1.(4分)(2023春•牟平区期末)(1)若am=an(a>0且a≠1,m、n是正整数),则m=n.利用上面结论解决问题:如果2÷8x×16x=26,求x的值.(2)若(ax+3)(7x2﹣3x+1)中不含x的二次项,求a的值.(4分)(2023•宁南县模拟)先化简:÷(a+1)+,再在﹣1≤a≤1中选取一个你喜欢的整数a的值代入求值,3.(4分)(2023春•任城区期末)如图,DE⊥AB于点E,DF⊥AC于点F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)已知AC=18,BE=4,求AB的长.4.(4分)(2022秋•盘山县期末)因式分解:(1)a3﹣ab2;(2)x3﹣2x2+x.5.(5分)(2023春•青冈县期末)如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED.(1)求证:BD=CD.(2)若∠A=135°,∠BCE=55°,求∠DBC的度数.6.(8分)(2023春•南阳期末)如图(1)、图(2)、图(3)均为10×10的正方形网格,每个小正方形的顶点称为格点,点A,B,C均在格点上.请你只用无刻度的直尺,在给定的网格中按要求画图(保留画图痕迹,不要求写出画法).(1)在图(1)中画出△ABC的BC边上的高AD;(2)在图(1)中,在BC边上画出点E,连结AE,使AE平分△ABC的面积;(3)在图(2)中,画出△ABC关于直线MN的轴对称图形△A′B′C';(4)在图(3)中,在MN上画出点P,使PA+PC最小.7.(6分)(2023春•宣汉县校级期末)在边长为9的等边三角形ABC中,点P是AB上一动点,以每秒1个单位长度的速度从点A向点B运动,设运动时间为t秒.(1)如图1,若点Q是BC上一定点,BQ=6,PQ∥AC,求t的值;(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位长度的速度从点B经点C向点A运动,当t为何值时,△APQ为等边三角形?8.(4分)(2022秋•大足区期末)如图1,△ABC中,AD为△ABC的中线,点E在AD上,且∠CED=∠BAD.(1)求证:AB=CE.(2)如图2,连接BE,若BC=AC=2DE,∠ABE=14°,求∠DAC的度数.(4分)(2023•双峰县一模)先约分,再求值:•,其中x=3.(5分)(2023•乾安县一模)列分式方程解应用题:2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某工厂为了满足市场需求,提高生产效率,在生产操作中需要用机器人来搬运原材料.现有A、B两种机器人,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运750kg所用时间与B型机器人搬运500kg所用时间相等,则两种机器人每小时分别搬运多少原料?11.(4分)(2023•黄石模拟)如图,△ACB中,点D是AB边上一点,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若CD=CF,∠DCF=120°,求∠ACD的度数.(5分)(2023•安庆模拟)某中学为配合开展“垃圾分类进校园”活动,新购买了一批不同型号的垃圾桶,学校先用2400元购买了一批给班级使用的小号垃圾桶,再用3200元购买了一批放在户外使用的大号垃圾桶,已知一个大号垃圾桶的价格是小号垃圾桶的4倍.且大号垃圾桶购买的数量比小号垃圾桶少50个,求一个小号垃圾桶的价格.13.(5分)(2023•文峰区二模)甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款50000元,乙公司共捐款70000元,已知甲公司人数比乙公司少30人,乙公司的人均捐款是甲公司人均捐款的倍.(1)求甲、乙两公司各有多少人?(2)现用所有捐款购买A,B两种防疫物资,已知A种防疫物资每箱7500元,B种防疫物资每箱6000元,若购买A种防疫物资不少于8箱,问有几种购买方案?请设计出来(注:A,B两种防疫物资都要购买,且只能整箱买,所有捐款要恰好用完.)14.(5分)(2023春•莆田期中)已知:如图,点D在△ABC的外部,DE过点C,BC与AD交于点O.∠1=∠2=∠3,AB=AD.(1)求证:△ACE是等腰三角形;(2)过点A作AF⊥DE于点F,若,AE=3,BC=6,求线段AF的长.15.(5分)(2023春•东源县期末)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=8cm,点P从点出发,沿A→B→A方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以lcm/s的速度运动,P、Q两点同时出发,当点P到达点A时,P、Q两点同时停止运动,设点P的运动时间为t(s).(1)求证:AB∥DE.(2)写出线段AP的长(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,求t的值.16.(5分)(2023春•安徽期末)甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“﹣a”,得到的结果为6x2+11x﹣10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2﹣9x+10.(1)求正确的a、b的值.(2)计算这道乘法题的正确结果.17.(5分)(2023春•北票市期末)如图,在△ABC中,AB=AC,D,E,F分别在三边上,且BE=CD,BD=CF,G为EF的中点.(1)若∠A=40°,求∠B的度数;(2)试说明:DG垂直平分EF.18.(5分)(2023春•银川校级期末)如图,已知△ABC中,AB=AC,D为BC的中点,DE⊥AC,DF⊥AB,垂足分别是点E、F,求证:DF=DE.19.(5分)(2022秋•襄州区期末)如图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图b形状拼成一个正方形.(1)你认为图b中的阴影部分的正方形的边长等于多少?(2)观察图b你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m﹣n)2,mn(3)已知m+n=7,mn=6,求(m﹣n)2的值.20.(5分)(2023春•邗江区期末)先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.21.(5分)(2022•隆昌市校级模拟)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)按照(2)中两种汽车进价不变,如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?22.(5分)(2021秋•海门市期末)定义:若两个分式的差的绝对值为2,则称这两个分式属于“友好分式组”.(1)下列3组分式:①与;②与;③与.其中属于“友好分式组”的有(只填序号);(2)若正实数a,b互为倒数,求证,分式与属于“友好分式组”;(3)若a,b均为非零实数,且分式与属于“友好分式组”,求分式的值.23.(5分)(2022•包头模拟)甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?24.(5分)(2022秋•丰泽区校级期末)阅读材料:利用公式法,可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c(a≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如:.根据以上材料,解答下列问题.(1)分解因式:x2+2x﹣3;(2)求多项式x2+6x﹣9的最小值;(3)已知a,b,c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC的周长.25.(5分)(2022春•沙坪坝区校级期中)如图,在△ABC中,∠ABC、∠ACB的平分线交于点D,延长BD交AC于E,G、F分别在BD、BC上,连接DF、GF,其中∠A=2∠BDF,GD=DE.(1)当∠A=80°时,求∠EDC的度数;(2)求证:CF=FG+CE.26.(5分)(2022秋•文登区期中)如图1,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC.(1)连接AC,则△ADC的形状是三角形.(2)如图2,在四边形ABCD的外部以BC为一边作等边△BCE,并连接AE.1、试说明:BD=AE;2、请你说明BD2=AB2+BC2成立的理由.27.(5分)(2022秋•江津区期中)BD是△ABC的角平分线,E在BC边上,连接DE,且DE=AD.(1)求证:∠A与∠BED互补;(2)点F在AB边上,连接DF,若∠A+2∠DFB=180°,探究线段BF、BE、DE之间满足的等量关系,并加以证明.28.(6分)(2021秋•望城区期末)如图1,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD,(1)求证:∠DEC+∠DCE=90°;(2)如图2,若∠ABD的平分线与CD的延长线交于F,且∠F=58°,求∠ABC.29.(6分)(2022春•临漳县期末)如图1和2,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.(1)如图1,若α=90°,根据教材中一个重要性质直接可得DA=CD,这个性质是(2)问题解决:如图2,求证AD=CD;(3)问题拓展:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证:BD+AD=BC.30.(6分)(2023春•渠县校级期末)阅读并解决问题.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论