广东省深圳市普通高中2025届高二数学第一学期期末联考试题含解析_第1页
广东省深圳市普通高中2025届高二数学第一学期期末联考试题含解析_第2页
广东省深圳市普通高中2025届高二数学第一学期期末联考试题含解析_第3页
广东省深圳市普通高中2025届高二数学第一学期期末联考试题含解析_第4页
广东省深圳市普通高中2025届高二数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市普通高中2025届高二数学第一学期期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.经过点作圆的弦,使点为弦的中点,则弦所在直线的方程为A. B.C. D.2.圆与圆的位置关系为()A.内切 B.相交C.外切 D.外离3.记等比数列的前项和为,若,,则()A.12 B.18C.21 D.274.已知全集,集合,则()A. B.C. D.5.已知是双曲线的左、右焦点,点P在C上,,则等于()A.2 B.4C.6 D.86.已知矩形,,,沿对角线将折起,若二面角的余弦值为,则与之间距离为()A. B.C. D.7.用数学归纳法证明“”时,由假设证明时,不等式左边需增加的项数为()A. B.C. D.8.已知抛物线:的焦点为F,准线l上有两点A,B,若为等腰直角三角形且面积为8,则抛物线C的标准方程是()A. B.C.或 D.9.设是定义在R上的函数,其导函数为,满足,若,则()A. B.C. D.a,b的大小无法判断10.的展开式中的系数为,则()A. B.C. D.11.某种产品的广告费支出与销售额(单位:万元)之间的关系如下表:245683040605070若已知与的线性回归方程为,那么当广告费支出为5万元时,随机误差的效应(残差)为万元(残差=真实值-预测值)A.40 B.30C.20 D.1012.已知函数的值域为,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若在数列的每相邻两项之间插入此两项的和,可形成新的数列,再把所得数列按照同样的方法不断进行构造,又可以得到新的数列.现将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;依次构造,第次得到数列1,,,,…,,2;记则______,设数列的前n项和为,则______14.万众瞩目的北京冬奥会将于2022年2月4日正式开幕,继2008年北京奥运会之后,国家体育场(又名鸟巢)将再次承办奥运会开幕式.在手工课上,王老师带领同学们一起制作了一个近似鸟巢的金属模型,其俯视图可近似看成是两个大小不同、扁平程度相同的椭圆.已知大椭圆的长轴长为40cm,短轴长为20cm,小椭圆的短轴长为10cm,则小椭圆的长轴长为________cm.15.抛物线()上的一点到其焦点F的距离______.16.《九章算术》中的“两鼠穿墙题”是我国数学的古典名题.“今有城墙厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半……”题意是:“两只老鼠从城墙的两边相对分别打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半……”则小老鼠第三天穿城墙______尺;若城墙厚40尺,则至少在第________天相遇三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆过点,离心率为.(1)求椭圆的方程;(2)过点作直线,与直线和椭圆分别交于两点,(与不重合).判断以为直径的圆是否过定点,如果过定点,求出定点坐标;如果不过定点,说明理由.18.(12分)如图,在三棱锥中,已知△ABC和△PBC均为正三角形,D为BC的中点(1)求证:平面;(2)若,,求三棱锥的体积19.(12分)已知函数.(1)当时,不等式恒成立,求实数的取值范围;(2)解关于的不等式:.20.(12分)已知函数f(x)=x-mlnx-m.(1)讨论函数f(x)的单调性;(2)若函数f(x)有最小值g(m),证明:g(m)在上恒成立.21.(12分)如图,在棱长为2的正方体中,,分别为线段,的中点.(1)求点到平面的距离;(2)求平面与平面夹角的余弦值.22.(10分)在①,②,③这三个条件中任选一个补充在下面问题中,并解答下列题目设首项为2的数列的前n项和为,前n项积为,且(1)求数列的通项公式;(2)求的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题知为弦AB的中点,可得直线与过圆心和点的直线垂直,可求的斜率,然后用点斜式求出的方程【详解】由题意知圆的圆心为,,由,得,∴弦所在直线的方程为,整理得.选A.【点睛】本题考查直线与圆的位置关系,直线的斜率,直线的点斜式方程,属于基础题2、C【解析】将圆的一般方程化为标准方程,根据圆心距和半径的关系,判断两圆的位置关系.【详解】圆的标准方程为,圆的标准方程为,两圆的圆心距为,即圆心距等于两圆半径之和,故两圆外切,故选:C.3、C【解析】根据等比数列的性质,可知等比数列的公比,所以成等比数列,根据等比的中项性质即可求出结果.【详解】因为为等比数列的前项和,且,,易知等比数列的公比,所以成等比数列所以,所以,解得.故选:C4、B【解析】根据题意先求出,再利用交集定义即可求解.【详解】全集,集合,则,故故选:B5、D【解析】根据双曲线定义写出,两边平方代入焦点三角形的余弦定理中即可求解【详解】双曲线,,所以,根据双曲线的对称性,可假设在第一象限,设,则,所以,,在中,根据余弦定理:,即,解得:,所以故选:D6、C【解析】过点在平面内作,过点在平面内作,以、为邻边作平行四边形,连接,分析可知二面角的平面角为,利用余弦定理求出,证明出,再利用勾股定理可求得的长.【详解】过点在平面内作,过点在平面内作,以、为邻边作平行四边形,连接,因为,,,则,因为,由等面积法可得,同理可得,由勾股定理可得,同理可得,,因为四边形为平行四边形,且,故四边形为矩形,所以,,因为,所以,二面角的平面角为,在中,,,由余弦定理可得,,,,则,,因为,平面,平面,则,,由勾股定理可得.故选:C.7、C【解析】当成立,写出左侧的表达式,当时,写出对应的关系式,观察计算即可【详解】从到成立时,左边增加的项为,因此增加的项数是,故选:C8、C【解析】分或()两种情况讨论,由面积列方程即可求解【详解】由题意得,当时,,解得;当或时,,解得,所以抛物线的方程是或.故选:C.9、A【解析】首先构造函数,再利用导数判断函数的单调性,即可判断选项.【详解】设,,所以函数在单调递增,即,所以,那么,即.故选:A10、B【解析】根据二项式展开式的通项,先求得x的指数为1时r的值,再求得a的值.【详解】由题意得:二项式展开式的通项为:,令,则,故选:B11、D【解析】分析:把所给的广告费支出5万元时,代入线性回归方程,做出相应的销售额,这是一个预测值,再求出与真实值之间有一个误差即得.详解:与的线性回归方程为,当时,50,当广告费支出5万元时,由表格得:,故随机误差的效应(残差)为万元.故选D.点睛:本题考查回归分析的初步应用,考查求线性回归方程,考查预测y的值,是一个综合题12、D【解析】求出函数在时值的集合,函数在时值的集合,再由已知并借助集合包含关系即可作答.【详解】当时,在上单调递增,,,则在上值的集合是,当时,,,当时,,当时,,即在上单调递减,在上单调递增,,,则在上值的集合为,因函数的值域为,于是得,则,解得,所以实数的取值范围是.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①.81②.【解析】根据数列的构造写出前面几次得到的新数列,寻找规律,构造等比数列,求出通项公式,再进行求和.【详解】第1次得到数列1,3,2,此时;第2次得到数列1,4,3,5,2,此时;第3次得到数列1,5,4,7,3,8,5,7,2,此时;第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时,故81,且故,又,所以数列是以为首项,公比为3的等比数列,所以,故,所以故答案为:81,14、20【解析】求出大椭圆的离心率等于小椭圆的离心率,然后求解小椭圆的长轴长【详解】在大椭圆中,,,则,.因为两椭圆扁平程度相同,所以离心率相等,所以在小椭圆中,,结合,得,所以小椭圆的长轴长为20.故填:20.【点睛】本题考查椭圆的简单性质的应用,对椭圆相似则离心率相等这一基础知识的考查15、【解析】将点坐标代入方程中可求得抛物线的方程,从而可得到焦点坐标,进而可求出【详解】解:为抛物线上一点,即有,,抛物线的方程为,焦点为,即有.故答案为:5.16、①.##0.25②.6【解析】由题意知小老鼠每天打洞的距离是以1为首项,以为公比的等比数列,大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,即可算出小老鼠第三天穿城墙的厚度,再根据等比数列求和公式,构造等式,即可得解.【详解】由题意知,小老鼠每天打洞的距离是以1为首项,以为公比的等比数列,前天打洞之和为,∴小老鼠第三天穿城墙的厚度为;大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,前天打洞之和为,∴两只老鼠第天打洞穿墙的厚度之和为,且数列为递增数列,而,,又城墙厚40尺,所以这两只老鼠至少6天相遇.故答案为:;6.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)过定点,定点为【解析】(1)根据离心率及顶点坐标求出即可得椭圆方程;(2)当直线斜率存在时,设直线的方程为(),求出的坐标,设是以为直径的圆上的点,利用向量垂直可得恒成立,可得定点,斜率不存在时验证即可.【小问1详解】由题意得,,,又因为,所以.所以椭圆C的方程为.【小问2详解】以为直径的圆过定点.理由如下:当直线斜率存在时,设直线的方程为().令,得,所以.由得,则或,所以.设是以为直径的圆上的任意一点,则,.由题意,,则以为直径的圆的方程为.即恒成立即解得故以为直径的圆恒过定点.当直线斜率不存在时,以为直径的圆也过点.综上,以为直径的圆恒过定点.18、(1)证明见解析;(2).【解析】【小问1详解】因为△ABC和△PBC为正三角形,D为BC的中点,所以,又,所以平面【小问2详解】因为△ABC和△PBC为正三角形,且,所以,又,所以正三角形的面积为,所以.19、(1);(2)答案见解析.【解析】(1)由题设可得,进而可知在恒成立,即可求参数范围.(2)题设不等式等价于,讨论的大小并根据一元二次不等式的解法求解集即可.【小问1详解】当时,得,即.由,则,∴,即,∴,即,∴实数的取值范围是.【小问2详解】由,即,即.①当时,不等式解集为;②当时,不等式的解集为;③当时,不等式的解集为.综上,当时﹐不等式的解集为;当时,不等式的解集为﹔当时,不等式的解集为.20、(1)答案见解析(2)证明见解析【解析】(1)求出函数的导数,讨论其符号后可得函数的单调区间.(2)根据(1)的结论可得函数的最小值,再利用导数可证不等式.【小问1详解】函数的定义域为,且,当时,在上恒成立,所以此时在上为增函数,当时,由,解得,由,解得,所以在上为减函数,在上为增函数,综上:当时,在上为增函数,当时,在上为减函数,在上为增函数;【小问2详解】由(1)知:当时,在上为增函数,无最小值.当时,在上上为减函数,在上为增函数,所以,即,则,由,解得,由,解得,所以在上为增函数,在上为减函数,所以,即在上恒成立.21、(1);(2).【解析】(1)以为原点,为轴,为轴,为轴,建立空间直角坐标系.可根据题意写出各个点的坐标,进而求出平面的法向量和的坐标,点到平面的距离.计算即可求出答案.(2)由(1)知平面的法向量,在把平面的法向量表示出来,平面与平面夹角的余弦值为,计算即可求出答案.【小问1详解】以为原点,为轴,为轴,为轴,建立如下图所示的空间直角坐标系.由于正方体的棱长为2和,分别为线段,的中点知,.设平面的法向量为..则..故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论