2025届江西省宜春市靖安县数学高一上期末复习检测试题含解析_第1页
2025届江西省宜春市靖安县数学高一上期末复习检测试题含解析_第2页
2025届江西省宜春市靖安县数学高一上期末复习检测试题含解析_第3页
2025届江西省宜春市靖安县数学高一上期末复习检测试题含解析_第4页
2025届江西省宜春市靖安县数学高一上期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省宜春市靖安县数学高一上期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列命题是全称量词命题,且是真命题的为()A.有些四边形的内角和不等于360° B.,C., D.所有能被4整除的数都是偶数2.我国古代数学名著《九章算术》里有一道关于玉石的问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(两).问玉、石重各几何?”如图所示的程序框图反映了对此题的一个求解算法,运行该程序框图,则输出的,分别为()A., B.,C., D.,3.已知,则os等于()A. B.C. D.4.已知函数若关于的方程有6个根,则的取值范围为()A. B.C. D.5.已知角终边上A点的坐标为,则()A.330 B.300C.120 D.606.下列函数中,是奇函数且在其定义域内单调递增的是A. B.C. D.7.若,则的最小值是()A.1 B.2C.3 D.48.函数y=的单调递减区间是()A.(-∞,1) B.[1,+∞)C.(-∞,-1) D.(-1,+∞)9.已知角的终边在射线上,则的值为()A. B.C. D.10.若在上单调递减,则的取值范围是().A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数,其中,,的图象如图所示,求的解析式____12.不等式的解集为_____13.如图,在三棱锥中,已知,,,,则三棱锥的体积的最大值是________.14.=_______________.15.已知向量,,若,则与的夹角为______16.函数的部分图象如图所示,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数的部分图象如图:(1)求解析式;(2)求函数的单调增区间.18.已知集合,集合,集合.(1)若,求实数的取值范围;(2)命题,命题,若是的必要不充分条件,求实数的取值范围.19.已知函数是上的奇函数(1)求;(2)用定义法讨论在上的单调性;(3)若在上恒成立,求的取值范围20.已知函数满足下列3个条件:①函数的周期为;②是函数的对称轴;③.(1)请任选其中二个条件,并求出此时函数的解析式;(2)若,求函数的最值.21.已知函数.(1)判断并证明的奇偶性;(2)若,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据定义分析判断即可.【详解】A和C都是存在量词命题,B是全称量词命题,但其是假命题,如时,,D选项为全称命题且为真命题故选:D.2、C【解析】执行程序框图,;;;,结束循环,输出的分别为,故选C.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.3、A【解析】利用诱导公式即可得到结果.【详解】∵∴os故选A【点睛】本题考查诱导公式的应用,属于基础题.4、B【解析】作出函数的图象,令,则原方程可化为在上有2个不相等的实根,再数形结合得解.【详解】作出函数的图象如图所示.令,则可化为,要使关于的方程有6个根,数形结合知需方程在上有2个不相等的实根,,不妨设,,则解得,故的取值范围为,故选B【点睛】形如的函数的零点问题与函数图象结合较为紧密,处理问题的基础和关键是作出,的图象.若已知零点个数求参数的范围,通常的做法是令,先估计关于的方程的解的个数,再根据的图象特点,观察直线与图象的交点个数,进而确定参数的范围5、A【解析】根据特殊角的三角函数值求出点的坐标,再根据任意角三角函数的定义求出的值.【详解】,,即,该点在第四象限,由,,得.故选:A.6、C【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案【详解】解:根据题意,依次分析选项:对于A,y=sinx,是正弦函数,在定义域上不是增函数;不符合题意;对于B,y=tanx,为正切函数,在定义域上不是增函数,不符合题意;对于C,y=x3,是奇函数且在其定义域内单调递增,符合题意;对于D,y=ex为指数函数,不是奇函数,不符合题意;故选C【点睛】本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性7、C【解析】采用拼凑法,结合基本不等式即可求解.【详解】因为,,当且仅当时取到等号,故的最小值是3.故选:C8、A【解析】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,再结合二次函数的性质可得函数t的增区间【详解】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,由二次函数的性质可得函数t的增区间为(-∞,1),所以函数的单调递减区间为(-∞,1).故答案为A【点睛】本题主要考查指数函数和二次函数的单调性,考查复合函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.9、A【解析】求三角函数值不妨作图说明,直截了当.【详解】依题意,作图如下:假设直线的倾斜角为,则角的终边为射线OA,在第四象限,,,,用同角关系:,得;∴;故选:A.10、B【解析】令f(x)=,由题意得f(x)在上单调递增,且f(﹣1),由此能求出a的取值范围【详解】∵函数在上单调递减,令f(x)=,∴f(x)=在上单调递增,且f(﹣1)∴,解得a≤8故选B.【点睛】本题考查实数值的求法,注意函数的单调性的合理运用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】首先根据函数的最高点与最低点求出A,b,然后由图像求出函数周期从而计算出,再由函数过点求出.【详解】,,,解得,则,因为函数过点,所以,,解得因为,所以,.故答案为:【点睛】本题考查由图像确定正弦型函数的解析式,第一步通过图像的最值确定A,b的值,第二步通过周期确定的值,第三步通过最值点或者非平衡位置的点以及12、【解析】把不等式x2﹣2x>0化为x(x﹣2)>0,求出解集即可【详解】不等式x2﹣2x>0可化为x(x﹣2)>0,解得x<0或x>2;∴不等式的解集为{x|x<0或x>2}故答案为【点睛】本题考查了一元二次不等式的解法与应用问题,是基础题目13、【解析】过作垂直于的平面,交于点,,作,通过三棱锥体积公式可得到,可分析出当最大时所求体积最大,利用椭圆定义可确定最大值,由此求得结果.【详解】过作垂直于的平面,交于点,作,垂足为,,当取最大值时,三棱锥体积取得最大值,由可知:当为中点时最大,则当取最大值时,三棱锥体积取得最大值.又,在以为焦点的椭圆上,此时,,,,三棱锥体积最大值为.故答案为:.【点睛】关键点点睛:本题考查三棱锥体积最值的求解问题,解题关键是能够将所求体积的最值转化为线段长度最值的求解问题,通过确定线段最值得到结果.14、【解析】解:15、##【解析】先求向量的模,根据向量积,即可求夹角.【详解】解:,,所以与的夹角为.故答案为:16、##【解析】函数的图象与性质,求出、与的值,再利用函数的周期性即可求出答案.【详解】解:由图象知,,∴,又由图象可得:,可求得,∴,∴,∴故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由函数的最大值和最小值求A;由周期解得.由,解得:.即可求得解析式;(2)直接利用复合函数单调性“同增异减”列不等式,即可求得单增区间.小问1详解】由函数的最大值为2.最小值-2.可得A=2;由从到为函数的一个周期,可得:,解得:.所以由在减区间上,且,解得:.所以.【小问2详解】要求函数的单增区间,只需,解得:,所以函数的单调增区间为18、(1)或(2)【解析】(1)根据分式不等式的解法求出集合,利用集合间的基本关系即可求得的取值范围;(2)根据必要不充分条件的定义可得,由一元二次不等式的解法求出集合,利用集合间的基本关系即可求出a的取值范围.【小问1详解】解:解不等式得或,所以或,因为,所以所以或,解得或,所以实数的取值范围为或.【小问2详解】解:是的必要不充分条件,所以,解不等式,得,所以,所以且,解得,所以实数的取值范围.19、(1);(2)是上的增函数;(3).【解析】(1)利用奇函数的定义直接求解即可;(2)用函数的单调性的定义,结合指数函数的单调性直接求解即可;(3)利用函数的奇函数的性质、单调性原问题可以转化为在上恒成立,利用换元法,再转化为一元二次不等式恒成立问题,分类讨论,最后求出的取值范围.【详解】(1)函数是上的奇函数即即解得;(2)由(1)知设,则故,,故即是上的增函数(3)是上的奇函数,是上的增函数在上恒成立等价于等价于在上恒成立即在上恒成立“*”令则“*”式等价于对时恒成立“**”①当,即时“**”为对时恒成立②当,即时,“**”对时恒成立须或解得综上,的取值范围是【点睛】本题考查了奇函数的定义,考查了函数单调性的定义,考查了指数函数的单调性的应用,考查了不等式恒成立问题,考查了换元法,考查了数学运算能力.20、(1)答案见解析,;(2)最大值;最小值.【解析】(1)由①知,由②知,由③知,结合即可求出的解析式.(2)由可得,进而可求出函数最值.【详解】解:(1)选①②,则,解得,因为,所以,即;选①③,,由得,因,所以,即;选②③,,由得,因为,所以,即.(2)由题意得,因为,所以.所以当即时,有最大值,所以当即时,有最小值.【点睛】本题考查了三角函数的周期,考查了三角函数的对称轴,考查了三角函数的值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论