版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省南京市六合区程桥高级中学高二上数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若正方体ABCDA1B1C1D1的棱长为1,则直线A1C1到平面ACD1的距离为()A.1 B.C. D.2.下图是一个“双曲狭缝”模型,直杆沿着与它不平行也不相交的轴旋转时形成双曲面,双曲面的边缘为双曲线.已知该模型左、右两侧的两段曲线(曲线AB与曲线CD)所在的双曲线离心率为2,曲线AB与曲线CD中间最窄处间的距离为10cm,点A与点C,点B与点D均关于该双曲线的对称中心对称,且|AB|=30cm,则|AD|=()A.10cm B.20cmC.25cm D.30cm3.在平行六面体ABCD﹣A1B1C1D1中,AC与BD的交点为M,设=,=,=,则=()A.++ B.+C.++ D.+4.已知圆C的方程为,点P在圆C上,O是坐标原点,则的最小值为()A.3 B.C. D.5.复数的共轭复数的虚部为()A. B.C. D.6.几何学史上有一个著名的米勒问题:“设点、是锐角的一边上的两点,试在边上找一点,使得最大的.”如图,其结论是:点为过、两点且和射线相切的圆的切点.根据以上结论解决一下问题:在平面直角坐标系中,给定两点,,点在轴上移动,当取最大值时,点的横坐标是()A.B.C.或D.或7.已知在一次降雨过程中,某地降雨量(单位:mm)与时间t(单位:min)的函数关系可表示为,则在时的瞬时降雨强度为()mm/min.A. B.C.20 D.4008.已知圆,则圆C关于直线对称的圆的方程为()A. B.C. D.9.若点在椭圆上,则该椭圆的离心率为()A. B.C. D.10.双曲线:的渐近线与圆:在第一、二象限分别交于点、,若点满足(其中为坐标原点),则双曲线的离心率为()A. B.C. D.11.已知双曲线C的离心率为,,是C的两个焦点,P为C上一点,,若△的面积为,则双曲线C的实轴长为()A.1 B.2C.4 D.612.丹麦数学家琴生(Jensen)是19世纪对数学分析作出卓越贡献的巨人,特别是在函数的凸凹性与不等式方面留下了很多宝贵的成果.设函数在区间内的导函数为,在区间内的导函数为,在区间内恒成立,则称函数在区间内为“凸函数”,则下列函数在其定义域内是“凸函数”的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在上单调递减,则的取值范围是______.14.若一个球表面积为,则该球的半径为____________15.抛物线的准线方程是________16.已知等比数列满足:,,,则公比______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,其中.(1)求的值;(2)设(其中、为正整数),求的值.18.(12分)在平面直角坐标系中,圆C:,直线l:(1)若直线l与圆C相切于点N,求切点N的坐标;(2)若,直线l上有且仅有一点A满足:过点A作圆C的两条切线AP、AQ,切点分别为P,Q,且使得四边形APCQ为正方形,求m的值19.(12分)已知是等差数列,是等比数列,且,,,.(1)求的通项公式;(2)设,求数列的前n项和.20.(12分)已知,其中.(1)若,求在处的切线方程;(2)若是函数的极小值点,求函数在区间上的最值;(3)讨论函数的单调性.21.(12分)如图,五边形为东京奥运会公路自行车比赛赛道平面设计图,根据比赛需要,在赛道设计时需预留出,两条服务通道(不考虑宽度),,,,,为赛道.现已知,,千米,千米(1)求服务通道的长(2)在上述条件下,如何设计才能使折线赛道(即)的长度最大,并求最大值22.(10分)如图,四棱锥中,,且,(1)求证:平面平面;(2)若是等边三角形,底面是边长为3的正方形,是中点,求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先证明点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离,再建立空间直角坐标系,利用向量法求解.【详解】因为平面平面,所以A1C1//平面ACD1,则点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离.建立如图所示的空间直角坐标系,易知=(0,0,1),由题得平面,所以平面,所以,同理,因为平面,所以平面,所以是平面一个法向量,所以平面ACD1的一个法向量为=(1,1,1),故所求的距离为.故选:B【点睛】方法点睛:求点到平面的距离常用的方法有:(1)几何法(找作证指求);(2)向量法;(3)等体积法.要根据已知条件灵活选择方法求解.2、B【解析】由离心率求出双曲线方程,由对称性设出点A,B,D坐标,求出坐标,求出答案.【详解】由题意得:,解得:,因为离心率,所以,,故双曲线方程为,设,则,,则,所以,则,解得:,故.故选:B3、B【解析】利用向量三角形法则、平行四边形法则、向量共线定理即可得出【详解】如图所示,∵=+,又=,=-,=,∴=+,故选:B4、B【解析】化简判断圆心和半径,利用圆的性质判断连接线段OC,交圆于点P时最小,再计算求值即得结果.【详解】化简得圆C的标准方程为,故圆心是,半径,则连接线段OC,交圆于点P时最小,因为原点到圆心的距离,故此时.故选:B.5、B【解析】先根据复数除法与加法运算求解得,再求共轭复数及其虚部.【详解】解:,所以其共轭复数为,其虚部为故选:B6、A【解析】根据米勒问题的结论,点应该为过点、的圆与轴的切点,设圆心的坐标为,写出圆的方程,并将点、的坐标代入可求出点的横坐标.【详解】解:设圆心的坐标为,则圆的方程为,将点、的坐标代入圆的方程得,解得或(舍去),因此,点的横坐标为,故选:A.7、B【解析】对题设函数求导,再求时对应的导数值,即可得答案.【详解】由题设,,则,所以在时的瞬时降雨强度为mm/min.故选:B8、B【解析】求得圆的圆心关于直线的对称点,由此求得对称圆的方程.【详解】设圆的圆心关于直线的对称点为,则,所以对称圆的方程为.故选:B9、C【解析】根据给定条件求出即可计算椭圆的离心率.【详解】因点在椭圆,则,解得,而椭圆长半轴长,所以椭圆离心率.故选:C10、B【解析】由,得点为三角形的重心,可得,即可求解.【详解】如图:设双曲线的焦距为,与轴交于点,由题可知,则,由,得点为三角形的重心,可得,即,,即,解得.故选:B【点睛】本题主要考查了双曲线的简单几何性质,三角形的重心的向量表示,属于中档题.11、C【解析】由已知条件可得,,,再由余弦定理得,进而求其正弦值,最后利用三角形面积公式列方程求参数a,即可知双曲线C的实轴长.【详解】由题意知,点P在右支上,则,又,∴,,又,∴,则在△中,,∴,故,解得,∴实轴长为,故选:C.12、B【解析】根据基本初等函数的导函数公式求各函数二阶导函数,判断其在定义域上是否恒有,即可知正确选项.【详解】A:,则,显然定义域内有正有负,故不是“凸函数”;B:,则,故是“凸函数”;C:,则,故不是“凸函数”;D:,则,显然定义域内有正有负,故不是“凸函数”;故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求导,求出函数的单调递减区间,由即可求解.【详解】,令,得,即的单调递减区间是,又在上单调递减,可得,即.故答案为:.14、【解析】设球的半径为,代入球的表面积公式得答案【详解】解:设球的半径为,则,得,即或(舍去)故答案为:15、【解析】将抛物线方程化为标准形式,从而得到准线方程.【详解】抛物线方程可化为:抛物线准线方程为:故答案为【点睛】本题考查抛物线准线的求解,易错点是未将抛物线方程化为标准方程.16、【解析】根据等比数列的通项公式可得,结合即可求出公比.【详解】设等比数列的公式为q,则,即,解得,又,所以,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1),,写出的展开式通项,由可得出关于的方程,解出的值,再利用赋值法可求得所求代数式的值;(2)写出的展开式,求出、的值,即可求得的值.【小问1详解】解:设,,的展开式通项为,所以,,即,,解得,所以,.【小问2详解】解:,,,因此,18、(1)或(2)3.【解析】(1)设切点坐标,由切点和圆心连线与切线垂直以及切点在圆上建立关系式,求解切点坐标即可;(2)由圆的方程可得圆心坐标及半径,由APCQ为正方形,可得|AC|=可得圆心到直线的距离为,可得m的值【小问1详解】解:设切点为,则有,解得:或x0=-2+1y0=-2,所以切点的坐标为或【小问2详解】解:圆C:的圆心(1,0),半径r=2,设,由题意可得,由四边形APCQ为正方形,可得|AC|=,即,由题意直线l⊥AC,圆C:(x﹣1)2+y2=4,则圆心(1,0)到直线的距离,可得,m>0,解得m=3.19、(1)(2)【解析】(1)设是公差为d的等差数列,是公比为q的等比数列,运用通项公式可得,,进而得到所求通项公式;(2)求得,再由数列的求和方法:分组求和,运用等差数列和等比数列的求和公式,计算即可得到所求和.【小问1详解】解:(1)设是公差为d的等差数列,是公比为q的等比数列,由,,可得,;即有,,则,则;【小问2详解】解:,则数列的前n项和为.20、(1);(2)最大值为5,最小值为;(3)答案见解析.【解析】(1)求出导函数,进而根据导数的几何意义求出切线的斜率,然后求出切线方程;(2)根据求出a,进而求出函数的单调区间,然后求出函数的最值;(3)先求出导函数,然后讨论a的取值范围,进而求出函数的单调区间.【小问1详解】当时,,,切点坐标为,,切线的斜率为,切线方程为,即.【小问2详解】,是函数的极小值点,,即,,令,得或,令,得,的单调递增区间为,,的单调递减区间为,,函数在区间上的最大值为5,最小值为.【小问3详解】函数的定义域为,,令得,.①当时,,函数在R上单调递增;②当时,,令,得或,令,得,的单调递增区间为,,的单调递减区间为;③当时,,令,得或,令,得,的单调递增区间为,,的单调递减区间为.综上:时,,函数R上单调递增;时,的单调递增区间为,,单调递减区间为;时,的单调递增区间为,,单调递减区间为.21、(1)服务通道的长为千米(2)时,折线赛道的长度最大,最大值为千米【解析】(1)先在中利用正弦定理得到长度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根据基本等式求解最值即可.【小问1详解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(负值舍去)所以服务通道的长为千米【小问2详解】在中,由余弦定理得:,即,所以因为,所以,所以,即(当且仅当时取等号)即当时,折
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025招标合同条款
- 二零二五年环保材料运输与销售合同模板6篇
- 2025房地产项目借款合同范本
- 城市轻轨建设合同模板
- 《智能仓储RFID技术应用》课件
- 2025退休人员返聘劳动合同范本
- 环保设备矿山采矿施工合同
- 二零二五年度农业产业化项目财务评估与融资方案合同3篇
- 商业大厦消防改造工程合同范本
- 互联网直播服务管理暂行办法
- 江苏省苏州市昆山、太仓、常熟、张家港四市2024-2025学年九年级上学期期末阳光测试道法卷(含答案)
- 温湿度记录管理制度模版(3篇)
- wps计算机二级选择押题单选题100道及答案
- 加油加气站安全生产风险分级管控体系全套资料
- 2025的委托拍卖合同范本
- 管理制度医疗器械质量管理制度
- 颅脑损伤的高压氧治疗
- 公司章程模板五篇
- 机械工程师招聘笔试题及解答
- 2023年基础会计学课后习题及参考答案
- 要分手费的分手协议书(标准)
评论
0/150
提交评论