版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省阳东广雅学校高二上数学期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,且与互相平行,则的值为()A.-2 B.C. D.2.椭圆上的点P到直线x+2y-9=0的最短距离为()A. B.C. D.3.若向量,,则()A. B.C. D.4.已知是两条不同的直线,是两个不同的平面,且,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件5.口袋中装有大小形状相同的红球3个,白球3个,小明从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次取得白球的概率为()A.0.4 B.0.5C.0.6 D.0.756.双曲线:的渐近线与圆:在第一、二象限分别交于点、,若点满足(其中为坐标原点),则双曲线的离心率为()A. B.C. D.7.在三棱锥中,,,,若,,则()A. B.C. D.8.直线的一个法向量为()A. B.C. D.9.已知,,若,则实数的值为()A. B.C. D.210.函数f(x)=的图象大致形状是()A. B.C. D.11.已知椭圆,则椭圆的长轴长为()A.2 B.4C. D.812.若复数,则()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.桌面排列着100个乒乓球,两个人轮流拿球装入口袋,能拿到第100个乒乓球人为胜利者.条件是:每次拿走球的个数至少要拿1个,但最多又不能超过5个,这个游戏中,先手是有必胜策略的,请问:如果你是最先拿球的人,为了保证最后赢得这个游戏,你第一次该拿走___个球14.如图,在棱长都为的平行六面体中,,,两两夹角均为,则________;请选择该平行六面体的三个顶点,使得经过这三个顶点的平面与直线垂直.这三个顶点可以是________15.若不同的平面的一个法向量分别为,,则与的位置关系为___________.16.已知椭圆和双曲线有相同的焦点和,设椭圆和双曲线的离心率分别为,,为两曲线的一个公共点,且(为坐标原点).若,则的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)双曲线的离心率为2,经过C的焦点垂直于x轴的直线被C所截得的弦长为12.(1)求C的方程;(2)设A,B是C上两点,线段AB的中点为,求直线AB的方程.18.(12分)已知函数.(1)求函数f(x)的最小正周期;(2)当时,求函数f(x)的值域.19.(12分)已知椭圆C:的离心率为,点为椭圆C上一点(1)求椭圆C的方程;(2)若M,N是椭圆C上的两个动点,且的角平分线总是垂直于y轴,求证:直线MN的斜率为定值20.(12分)已知抛物线C:(1)若抛物线C上一点P到F的距离是4,求P的坐标;(2)若不过原点O的直线l与抛物线C交于A、B两点,且,求证:直线l过定点21.(12分)已知椭圆:的离心率为,,分别为椭圆的左,右焦点,为椭圆上一点,的周长为.(1)求椭圆的方程;(2)为圆上任意一点,过作椭圆的两条切线,切点分别为A,B,判断是否为定值?若是,求出定值:若不是,说明理由,22.(10分)已知函数.(1)当时,求的最大值和最小值;(2)说明的图象由函数的图象经过怎样的变换得到?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】应用空间向量坐标的线性运算求、的坐标,根据空间向量平行有,即可求的值.【详解】由题设,,,∵与互相平行,∴且,则,可得.故选:A2、A【解析】与已知直线平行,与椭圆相切的直线有二条,一条距离最短,一条距离最长,利用相切,求出直线的常数项,再计算平行线间的距离即可.【详解】设与已知直线平行,与椭圆相切的直线为,则所以所以椭圆上点P到直线的最短距离为故选:A3、D【解析】由向量数量积的坐标运算求得数量积,模,结合向量的共线定义判断【详解】由已知,,,与不垂直,若,则,,但是,,因此与不共线故选:D4、B【解析】根据垂直关系的性质可判断.【详解】由题,,则或,若,则或或与相交,故充分性不成立;若,则必有,故必要性成立,所以“”是“”的必要不充分条件.故选:B.5、C【解析】求出第一次取得红球的事件、第一次取红球第二次取白球的事件概率,再利用条件概率公式计算作答.【详解】记“第一次取得红球”为事件A,“第二次取得白球”为事件B,则,,于是得,所以在第一次取得红球的条件下,第二次取得白球的概率为0.6.故选:C6、B【解析】由,得点为三角形的重心,可得,即可求解.【详解】如图:设双曲线的焦距为,与轴交于点,由题可知,则,由,得点为三角形的重心,可得,即,,即,解得.故选:B【点睛】本题主要考查了双曲线的简单几何性质,三角形的重心的向量表示,属于中档题.7、B【解析】根据空间向量的基本定理及向量的运算法则计算即可得出结果.【详解】连接,因为,所以,因为,所以,所以,故选:B8、B【解析】直线化为,求出直线的方向向量,因为法向量与方向向量垂直,逐项验证可得答案.【详解】直线的方向向量为,化为,直线的方向向量为,因为法向量与方向向量垂直,设法向量为,所以,由于,A错误;,故B正确;,故C错误;,故D错误;故选:B.9、D【解析】由,然后根据向量数量积的坐标运算即可求解.【详解】解:因,,所以,因为,所以,即,解得,故选:D.10、B【解析】利用函数的奇偶性排除选项A,C,然后利用特殊值判断即可【详解】解:由题得函数的定义域为,关于原点对称.所以函数是奇函数,排除选项A,C.当时,,排除选项D,故选:B11、B【解析】根据椭圆的方程求出即得解.【详解】解:由题得椭圆的所以椭圆的长轴长为.故选:B12、A【解析】根据复数的乘法运算即可求解.【详解】由,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】根据题意,由游戏规则,结合余数的性质,分析可得答案【详解】解:根据题意,第一次该拿走4个球,以后的取球过程中,对方取个,自己取个,由于,则自己一定可以取到第100个球.故答案为:414、①.②.点或点(填出其中一组即可)【解析】(1)以向量,,为基底分别表达出向量和,展开即可解决;(2)由上一问可知,用上一问同样的方法可以证明出,这样就证明了平面与直线垂直.【详解】(1)令,,,则,则有,故(2)令,,,则,则有,故故,即又由(1)之,,故直线垂直于平面同理可证直线垂直于平面故答案为:0;点或点15、平行【解析】根据题意得到,得出,即可得到平面与的位置关系.【详解】由题意,平面的一个法向量分别为,,可得,所以,所以,即平面与的位置关系为平行.故答案为:平行16、【解析】设出半焦距c,用表示出椭圆的长半轴长、双曲线的实半轴长,由可得为直角三角形,由此建立关系即可计算作答,【详解】设椭圆的长半轴长为,双曲线的实半轴长为,它们的半焦距为c,于是得,,由椭圆及双曲线的对称性知,不妨令焦点和在x轴上,点P在y轴右侧,由椭圆及双曲线定义得:,解得,,因,即,而O是线段的中点,因此有,则有,即,整理得:,从而有,即有,又,则有,即,解得,所以的取值范围是.故答案为:【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得值,根据离心率的定义求解离心率;②齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据已知条件求得,由此求得的方程.(2)结合点差法求得直线的斜率,从而求得直线的方程.【小问1详解】因为C的离心率为2,所以,可得.将代入可得,由题设.解得,,,所以C的方程为.【小问2详解】设,,则,.因此,即.因为线段AB的中点为,所以,,从而,于是直线AB的方程是.18、(1);(2).【解析】(1)先通过降幂公式和辅助角公式将函数化简,进而求出周期;(2)求出的范围,进而结合三角函数的性质求得答案.【小问1详解】,函数最小正周期为.【小问2详解】当时,,,∴,即函数的值域为.19、(1);(2)证明见解析.【解析】(1)根据椭圆的离心率公式,结合代入法进行求解即可;(2)根据角平分线的性质,结合一元二次方程根与系数关系、斜率公式进行求解即可.【小问1详解】椭圆的离心率,又,∴∵椭圆C:经过点,解得,∴椭圆C的方程为;【小问2详解】∵∠MPN的角平分线总垂直于y轴,∴MP与NP所在直线关于直线对称.设直线MP的斜率为k,则直线NP的斜率为∴设直线MP的方程为,直线NP的方程为设点,由消去y,得∵点在椭圆C上,则有,即同理可得∴,又∴直线MN的斜率为【点睛】关键点睛:由∠MPN的角平分线总垂直于y轴,得到MP与NP所在直线关于直线对称是解题的关键.20、(1)(2)见解析【解析】(1)由抛物线的定义,可得点的坐标;(2)可设直线的方程为,,,,与抛物线联立,消,利用韦达定理求得,,再根据,可得,从而可求得参数的关系,即可得出结论.【小问1详解】解:设,,由抛物线的定义可知,即,解得,将代入方程,得,即的坐标为;【小问2详解】证明:由题意知直线不能与轴平行,可设直线的方程为,与抛物线联立得,消去得,设,,,则,,由,可得,即,即,即,又,解得,所以直线方程为,当时,,所以直线过定点21、(1)(2)是;【解析】(1)由离心率和焦点三角形周长可求出,结合关系式得出,即可得出椭圆的方程;(2)由平行于轴特殊情况求出,即;当平行于轴时,设过的直线为,联立椭圆方程,令化简得关于的二次方程,由韦达定理即可求解.【小问1详解】由题可知,,解得,又,解得,故椭圆的标准方程为:;【小问2详解】如图所示,当平行于轴时,恰好平行于轴,,,;当不平行于轴时,设,设过点的直线为,联立得,令得,化简得,设,则,又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中山职业技术学院《电能计量技术》2023-2024学年第一学期期末试卷
- 昭通学院《智能终端与移动应用开发》2023-2024学年第一学期期末试卷
- 云南现代职业技术学院《传递过程导论》2023-2024学年第一学期期末试卷
- 企业市值管理中财务透明度的提升策略研究
- DB2201T 64-2024 梅花鹿布鲁氏菌病胶体金免疫层析检测方法
- 职业导论-房地产经纪人《职业导论》真题汇编1
- 房地产经纪操作实务-《房地产经纪操作实务》押题密卷2
- 年度培训工作总结
- 119消防安全月活动方案
- 二零二五年度废塑料编织袋回收与再生PE膜合同3篇
- 英语-辽宁省大连市2024-2025学年高三上学期期末双基测试卷及答案
- 2024年意识形态风险隐患点及应对措施
- 2025版新能源充电桩加盟代理合作协议范本3篇
- 2025年广东省揭阳市揭西县招聘事业单位人员11人历年高频重点提升(共500题)附带答案详解
- 空调年度巡检报告范文
- 静脉输液反应急救流程
- 反诈知识竞赛题库及答案(共286题)
- 2025届江苏省淮安市高三一模语文试题讲评课件
- 青岛版二年级下册数学三位数退位减法竖式计算题200道及答案
- 基础plc自学入门单选题100道及答案解析
- 2023年航天器热控系统行业分析报告及未来五至十年行业发展报告
评论
0/150
提交评论