版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020-2021学年广东省深圳高级中学九年级第一学期期中数学试
卷
一、单选题
I.-2019的倒数是()
A.-2019B.1C——D.2019
2019,2019
2.2019年10月1日上午,庆祝中华人民共和国成立70周年大会在北京天安门广场隆重举
行,超过200000军民以盛大的阅兵仪式和群众游行欢庆共和国70华诞.将200000用科
学记数法表示为()
A.2X105B.2X104C.0.2X105D.0.2X106
3.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方
块的个数,这个几何体的左视图是()
C.
B.a7-?a3—a4
C.(-3a)2=-6a2D.(a-1)2=a2-1
5.△ABC与△£>£步的相似比为1:4,则△ABC与aOE尸的周长比为()
A.1:2B.1:3C.1:4D.1:16
6.如图,在AABC中,D,E分别是边A8,AC上的点,DE//BC,AD:DB=2:1,下列
结论中错误的是()
,IM
「ADAE
D.AD'AB=AE'AC
BDCE
7.如图,在△ABC中,ACLBC,NABC=30°,点。是CB延长线上的一点,且BO=BA,
c.3+MD.3y
8.如图,已知△ABC,ZACB=90°,BC=3,AC=4,小红按如下步骤作图:
①分别以A、C为圆心,以大于1-AC的长为半径在AC两边作弧,交于两点M、N;
②连接MN,分别交A8、AC于点。、O;
③过C作CE〃A8交MN于点E,连接AE、CD.
则四边形AOCE的周长为()
A.10B.20C.12D.24
9.已知帅<0,一次函数y=ox-6与反比例函数>=曳在同一平面直角坐标系中的图象可
X
10.如图,在平面直角坐标系中,已知点4(-2,4),B(-8,-2),以原点O为位似
中心,相似比为方,把△ABO缩小,则点A的对应点A'的坐标是()
A.(-1,2)B.(-9,18)
C.(-9,18)或(9,-18)D.(-1,2)或(1,-2)
11.直线丫=履-4与y轴相交,所成的锐角的正切值为a,则上的值为()
A.2B.-2C.±2D.无法确定
12.如图,正方形ABCQ中,AB=6,E为AB的中点,将△4£)£沿。E翻折得到
延长EF交BC于G,FH1BC,垂足为H,连接BF、DG.以下结论:®BF//ED-,②)1\
DFG会ADCG;③AFHBsAEAD;®tanZG£B=—;⑤5MFG=2.4;其中正确的个数是
3
二、填空题
13.因式分解:4OX2-4ax+a—
14.如图,在4时测得旗杆的影长是4米,8时测得旗杆的影长是16米,若两次的日照光
线恰好垂直,则旗杆的高度是米.
15.已知有理数aWl,我们把;」一称为。的差倒数,如:2的差倒数上--1,-1的差倒
1-a1-2
数是,『八"■,a[=-l,政是0的差倒数,。3是S的差倒数,。4是“3的差倒数……
以此类推,那么。1+。2+。3+…。100的值是.
16.如图,在平面直角坐标系中,函数y=Ka>0,x>0)的图象与等边三角形0AB的边
x
0A,AB分别交于点M,N,且0M=2MA,若AB=3,那么点N的横坐标
三、解答题
17-|^y|+(-l)2019+2sin30°+(V3-V2)0
18.先化简(1+-?-)j立1—,再从不等式组[-2炉4的整数解中选一个合适的x
2
x-3X-6X+9l3x<2x+4
的值代入求值.
19.2019年女排世界杯中,中国女排以11战全胜且只丢3局的成绩成功卫冕本届世界杯冠
军.某校七年级为了弘扬女排精神,组建了排球社团,通过测量同学的身高(单位:cm),
并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.
学生身高频数分布直方图学生身高扇形统计图
(每组合最小值)
(1)填空:样本容量为,4=;
(2)把频数分布直方图补充完整;
(3)随机抽取1名学生,估计这名学生身高高于165c机的概率.
20.如图,一艘船由A港沿北偏东65°方向航行30&酎”至B港,然后再沿北偏西40。方
向航行至C港,C港在A港北偏东20°方向,
求(1)NC的度数.
(2)A,C两港之间的距离为多少k".
21.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽
种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360
元购买甲种树苗的棵数相同.
(1)求甲、乙两种树苗每棵的价格各是多少元?
(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售
价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用
不超过1500元,那么他们最多可购买多少棵乙种树苗?
22.如图,ZABD=ZBCD=90°,平分/AOC,过点B作交f连接
CM交DB于N.
(1)求证:B》=AD・CD;
(2)若CD=6,AD=8,求MN的长.
B
23.如图,在平面直角坐标系中,四边形。48c的顶点坐标分别为0(0,0),A(12,0),
B(8,6),C(0,6).动点P从点。出发,以每秒3个单位长度的速度沿边向终
点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设
运动的时间为f秒,PQ2=y.
(1)直接写出y关于r的函数解析式及r的取值范围:;
(2)当PQ=3旄时,求,的值;
(3)连接OB交PQ于点D若双曲线丫=工(&彳0)经过点。,问”的值是否变化?若
X
参考答案
一、单选题
1.-2019的倒数是()
解:-2019的倒数是
2019
故选:B.
2.2019年10月1日上午,庆祝中华人民共和国成立70周年大会在北京天安门广场隆重举
行,超过200000军民以盛大的阅兵仪式和群众游行欢庆共和国70华诞.将200000用科
学记数法表示为()
A.2X105B.2X104C.0.2X105D.0.2X106
解:将200000用科学记数法表示为2X105.
故选:A.
3.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方
块的个数,这个几何体的左视图是()
4.下列运算正确的是()
y34
A.苏.〃—at>B.a-ra—a
C.(-3“)2—-6a2D.(6?-1)2—a2-1
解:4、原式=〃,不符合题意;
B、原式=",符合题意;
C、原式=942,不符合题意;
Dy原式="2-24+1,不符合题意,
故选:B.
5.△ABC与△£>£/的相似比为1:4,则△ABC与△£>£:厂的周长比为()
A.1:2B.1:3C.1:4D.1:16
解:♦.♦△ABC与△/)£:尸的相似比为1:4,
.♦.△4BC与尸的周长比为1:4;
故选:C.
6.如图,在△48C中,D,E分别是边AB,4c上的点,DE//BC,AD;DB=2:1,下列
结论中错误的是()
C.—=-^D.AD-AB=AE-AC
BDCE
解:'JDE//BC,AD:DB=2:1,
/\ADE^/\ABC,
.DE=_^=2AD=AE
••瓦一瓦一京'而—而,
.•.2=(2)
^AABC39
B、C正确,
故选:D.
1.如图,在AABC中,ACVBC,NABC=30。,点。是C8延长线上的一点,且BC=8A,
D.3a
解:如图,•.•在△4BC中,ACLBC,/A8C=30°,
:.AB=2AC,BC=—
tan30
\*BD=BAf
:.DC=BD+BC=(2+遍)AC,
...tan/DAC=K=.屹tV^,'AC.=2+y.
ACACv
8.如图,已知△ABC,ZACB=90°,BC=3,AC=4,小红按如下步骤作图:
①分别以A、C为圆心,以大于aAC的长为半径在AC两边作弧,交于两点M、N;
②连接MN,分别交48、AC于点。、0;
③过C作CE〃AB交MN于点E,连接AE、CD.
则四边形A3CE的周长为()
A.10B.20C.12D.24
解:•••分别以A、C为圆心,以大于/AC的长为半径在AC两边作弧,交于两点M、N,
是AC的垂直平分线,
:.AD=CD,AE=CE,
:.ZCAD^ZACD,ZCAE^ZACE,
•:CE//AB,
:.ZCAD=ZACE,
:.ZACD=ZCAE,
.'.CD//AE,
...四边形ADCE是平行四边形,
二四边形AOCE是菱形;
:.0A=0C=—AC=2,OD=OE,ACLDE,
2
VZACB=90°,
:.DE//BC,
.•.0。是△ABC的中位线,
X3=1.5,
22
7OA2-K)D2~2.5,
菱形AOCE的周长=4AO=10.
故选:A.
9.已知abVO,一次函数y=ox-b与反比例函数),=包在同一平面直角坐标系中的图象可
解:若反比例函数y=且经过第一、三象限,则”>0.所以6<0.则一次函数y=or-b
X
的图象应该经过第一、二、三象限;
若反比例函数y=且经过第二、四象限,则aVO.所以b>0.则一次函数y=ar-6的图
x
象应该经过第二、三、四象限.
故选项A正确;
故选:A.
10.如图,在平面直角坐标系中,已知点A(-2,4),8(-8,-2),以原点。为位似
中心,相似比为微,把△A80缩小,则点A的对应点A'的坐标是()
X
C.(-9,18)或(9,-18)D.(-1,2)gg(1,-2)
解:点A(-2,4),B(-8,-2),以原点O为位似中心,相似比为方,把△AB。
缩小,
则点A的对应点A'的坐标是(-2X《,4X《)或(-2义(-《),4X(-《)),
2222
即(-1,2)或(1,-2),
故选:D.
11.直线>=爪-4与y轴相交,所成的锐角的正切值为则%的值为()
A.2B.-2C.±2D.无法确定
解:由直线的解析式可知直线与y轴的交点为(0,-4),与x轴的交点为(!,0),
,/直线y=kx-4与y轴相交所成锐角的正切值为多
工1
即|k|=二
44
解得人=±2.
故选:C.
12.如图,正方形A8CD中,AB=6,E为A8的中点,将△4OE沿DE翻折得到△尸OE,
延长EF交BC于G,FH1BC,垂足为H,连接8F、DG.以下结论:@BF//ED,②4
DFG会/\DCG;③XFHBsMEAD;®tanZGEB=~⑤&BFG=2.4;其中正确的个数是
3
()
C.4D.5
解::正方形ABC。中,AB=6,E为A8的中点,
:.AD=DC=BC=AB=6fAE=BE=3,ZA=ZC=ZABC=90°,
•・,AADE沿DE翻折得到△?£)£
:・NAED=NFED,AD=FD=6fAE=EF=3fZA=ZDFE=90°,
:.BE=EF=3,ZDFG=ZC=90°,
:./EBF=/EFB,
•・・/AED+/FED=NEBF+/EFB,
:.NDEF=NEFB,
:.BF//ED9故①正确;
*:AD=FD,
:.DF=DC,
(DH=DC
在RtAJ9"7和RtZ\QCG中,i,
1DG=DG
ARtADFG^RtADCG(//£),故②正确;
VF/71BC,ZABC=90°,
:.AB//FHfZT”B=NA=9O°,
・・・/EBF=NBFH=/AED,
AAFHB^AEAD,故③正确;
・・•RtADFG^RtADCG,
:.FG=CG,
设FG=CG=x,贝ij5G=6-x,EG=EF+FG=BE+FG=3+x,
在Rtz^BEG中,由勾股定理得:32+(6-x)2=(3+x)2,
解得:x=2,
・・・8G=4,
.,.tanZG£B=||=-1,故④正确;
AF1
':/\FHB^/\EAD,且黑==,
AD2
:.BH=2FH
设FH=a,贝ijHG=4-2m
在RtZ\F〃G中,由勾股定理得:a2+(4-2a)2=22,
解得:a=2(舍去)或
SAj3FG=-^-X4X-1-=2.4,故⑤正确;
25
故选:D.
二、填空题
13.因式分解:4渥-4ox+a=a(2x-1)2
解:原式=〃(4x2-4x+l)=a(2x-1)2,
故答案为:a(2x-1)2
14.如图,在A时测得旗杆的影长是4米,8时测得旗杆的影长是16米,若两次的日照光
线恰好垂直,则旗杆的高度是一8米.
如图,ZCPD=90°,QC=4mfQD=16mf
•:PQ_LCD,
:.ZPQC=90°,
:.ZC+ZQPC=90Q,
而/C+NO=90°,
:.ZQPC=ZDf
・・・RtZ\PCQsRt△。尸°,
•PQQCnnPQ4
••~二-i,匚、।J-~,——,
QDPQ16PQ
:.PQ=S,
即旗杆的高度为8/n.
故答案为:8.
15.已知有理数我们把;」一称为a的差倒数,如:2的差倒数上--1,-1的差倒
1-a1-2
数是,八=4,a[=-l,。2是0的差倒数,。3是S的差倒数,。4是“3的差倒数……
1-1J-D21
Q7
以此类推,那么41+42+43+…〃100的值是-丁.
一2一
解:Va,=-1,
1_1
.42=1-(-1)^2
1_,
。4=青-1,
这列数每3个数为一周期循环,
V1004-3=33-1,
ci\+々2+03+,,•+。100
=33义(-1+—+2)+(-1)
2
=97
~~2'
故答案为:祭
16.如图,在平面直角坐标系中,函数y=?(k>0,x>0)的图象与等边三角形048的边
OA,A8分别交于点M,N,且OM=2M4,若AB=3,那么点N的横坐标为它近.
一2一
解:过点N、M分别作NCLOB,MDVOB,垂足为C、D,
「△AOB是等边三角形,
N4O8=60°
;又0M=2M4,
:.0M=2,MA=1,
在RtAMOD中,
OD--^OM—1,MD=yj22-12=7§
:.M(1,73);
怎,
反比例函数的关系式为:
_Vs
设OC=a,则BC=3-a,NC,
a
在RL^BCN中,
NC=^/3BC,
**•—=73(3-a),
a
解得:4=生反,X=2Z返
(舍去)
22
故答案为:殳史.
2
三、解答题
17-|-y1+(-1)2019+2sin30°+(V3-V2)°
解:原式1+1+1=
2
92_1-2x<4
18.先化简(1+-^-)4_0,再从不等式组,一的整数解中选一个合适的X
x-3x"-6x+93x<2x+4
的值代入求值.
解:原式=警义濡芸
x-3
x+1'
产广妞所得-2。“
解不等式组《
3x<2x+4②
,其整数解为-1,0,1,2,3,
•.•要使原分式有意义,
...X可取0,2.
.,.当x=0时,原式=-3,
(或当x=2时,原式=-5).
19.2019年女排世界杯中,中国女排以11战全胜且只丢3局的成绩成功卫冕本届世界杯冠
军.某校七年级为了弘扬女排精神,组建了排球社团,通过测量同学的身高(单位:cm),
并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.
学生身高频数分布直方图学生身高扇形统计图
(每组合最小值)
(1)填空:样本容量为,a=100;
(2)把频数分布直方图补充完整;
(3)随机抽取1名学生,估计这名学生身高高于165。”的概率.
解:(1)54°+360°=0.15=15%
a=15+15%=100
故答案为100.
(每组含最小值)
如图为补充完整的频数分布直方图.
(3)学生身高高于165。"的有15+5=20
所以204-100=—
5
答:这名学生身高高于165tro的概率为
20.如图,一艘船由A港沿北偏东65°方向航行30&h”至B港,然后再沿北偏西40°方
向航行至C港,C港在A港北偏东20°方向,
求(1)NC的度数.
(2)A,C两港之间的距离为多少初?.
解:(1)由题意得:ZACB=20°+40°=60°;
(2)由题意得,ZCAB=65°-20°=45°,ZACB=400+20°=60°,AB=30&,
过8作BEJ_AC于E,如图所示:
:.NAEB=NCEB=90°,
在Rt/XABE中,VZABE=45°,
.•.△ABE是等腰直角三角形,
':AB=30&,
:.AE=BE=y-^-AB=30,
2
RF
在Rt^CBE中,VZACB=60°,tanZACB=—,
CE
・3日嚼=2
:.AC=AE+CE=30+10次,
C两港之间的距离为(30+1073)km.
21.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽
种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360
元购买甲种树苗的棵数相同.
(1)求甲、乙两种树苗每棵的价格各是多少元?
(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售
价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用
不超过1500元,那么他们最多可购买多少棵乙种树苗?
解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意
有
480_360,
x+10—x'
解得:x=30.
经检验,x=30是原方程的解,
x+10=30+10=40.
答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.
(2)设他们可购买棵乙种树苗,依题意有
30X(1-10%)(50-y)+40)<1500,
解得1
为整数,
•'-y最大为H.
答:他们最多可购买11棵乙种树苗.
22.如图,/ABD=/BCD=90:平分/AOC,过点B作8M〃C。交A。于M.连接
CM交DB于N.
(1)求证:B»=AD・CD;
(2)若CD=6,AD=8,求MN的长.
【解答】证明:(1)平分NAOC,
:.NADB=NCDB,且NAB£>=/BC£>=90°,
缸ABDsXBCD
.ADBD
•♦丽F
:.BD1=AD-CD
(2)'CBM//CD
:.NMBD=NBDC
:.NADB=NMBD,且NABO=90°
:.BM=MD,NMAB=NMBA
:.BM=MD=AM=4
•:BD2=AD*CD,且C£>=6,>40
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信阳师范大学《心理与教育研究方法》2021-2022学年第一学期期末试卷
- 进口货物运输合同三篇
- 信阳师范大学《健康教育学》2022-2023学年第一学期期末试卷
- 信阳师范大学《电磁学》2022-2023学年第一学期期末试卷
- 搭建互助学习的平台的学习社团安排计划
- 《机械零件加工》课件第一署名人在国内外主要刊物上发表的学术论文
- 新余学院《商务英语阅读》2021-2022学年第一学期期末试卷
- 2024年01月11192高层建筑施工期末试题答案
- 西北大学《决策心理学》2022-2023学年第一学期期末试卷
- 9.3溶质的质量分数(第1课时溶质的质量分数)+教学设计-2024-2025学年九年级化学人教版(2024)下册
- 2024年全国职业院校技能大赛高职组(智能节水系统设计与安装赛项)考试题库-上(单选题)
- 云南省2023年秋季学期期末普通高中学业水平考试信息技术(含答案解析)
- 小学综合实践活动《早餐与健康-营养早餐我来做》课件
- 检察院书记员面试真题及参考答案
- 幼儿教师资格《保教知识与能力》历年考试真题题库(含答案及解析)
- 人教部编版五年级语文上册 习作《 即景》说课稿
- 公路工程施工合同示范文本
- 采购进口产品专家论证意见表
- 致命性肺血栓栓塞症急救护理专家共识课件
- 小红书:2024母婴行业特色人群报告
- DB2104-T 0034-2023 地理标志产品 抚顺琥珀
评论
0/150
提交评论