2025届北京市顺义区第九中学高一上数学期末考试试题含解析_第1页
2025届北京市顺义区第九中学高一上数学期末考试试题含解析_第2页
2025届北京市顺义区第九中学高一上数学期末考试试题含解析_第3页
2025届北京市顺义区第九中学高一上数学期末考试试题含解析_第4页
2025届北京市顺义区第九中学高一上数学期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京市顺义区第九中学高一上数学期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,下列含有函数零点的区间是()A. B.C. D.2.若不等式对一切恒成立,那么实数的取值范围是A. B.C. D.3.已知函数,则在上的最大值与最小值之和为()A. B.C. D.4.已知关于的方程()的根为负数,则的取值范围是()A. B.C. D.5.在,,中,最大的数为()A.a B.bC.c D.d6.设全集,则图中阴影部分所表示的集合是A. B.C. D.7.已知函数,则()A.5 B.2C.0 D.18.已知两个不重合的平面α,β和两条不同直线m,n,则下列说法正确的是A.若m⊥n,n⊥α,m⊂β,则α⊥βB.若α∥β,n⊥α,m⊥β,则m∥nC.若m⊥n,n⊂α,m⊂β,则α⊥βD.若α∥β,n⊂α,m∥β,则m∥n9.设,给出下列四个结论:①;②;③;④.其中所有的正确结论的序号是A.①② B.②③C.①②③ D.②③④10.,则()A.64 B.125C.256 D.625二、填空题:本大题共6小题,每小题5分,共30分。11.设向量,若⊥,则实数的值为______12.已知函数则不等式的解集是_____________13.若函数(,且),在上的最大值比最小值大,则______________.14.若函数满足:对任意实数,有且,当[0,1]时,,则[2017,2018]时,______________________________15.已知函数若存在实数使得函数的值域为,则实数的取值范围是__________16.已知函数其中且的图象过定点,则的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.记.(1)化简;(2)若为第二象限角,且,求的值.18.已知平面直角坐标系中,,,Ⅰ若三点共线,求实数的值;Ⅱ若,求实数的值;Ⅲ若是锐角,求实数的取值范围19.2021年7月24日,我国运动员杨倩以环的成绩获得东京奥运会射击女子米气步枪项目金牌,为中国代表团摘下本届奥运会的首枚金牌,也让《义勇军进行曲》成为第一首奏响在本届奥运会赛场上的国歌.在决赛赛场上,第二阶段前轮(第枪,每轮枪)是选手淘汰阶段,后轮(第枪,每轮枪)进入奖牌争夺阶段.杨倩在第二阶段成绩如下:轮数枪数得分(1)计算第二阶段前4轮和后3轮得分的均值,试根据此结果分析该选手在淘汰阶段和奖牌争夺阶段的发挥状态哪个更好;(2)记后轮得分的均值为,标准差为,若数据落在内记为正常,否则不正常﹐请根据此结论判断该选手最后一枪在后轮个数据中是否为正常发挥?(参考数据:,计算结果精确到)20.已知函数,,设(1)求的值;(2)是否存在这样的负实数k,使对一切恒成立,若存在,试求出k取值集合;若不存在,说明理由.21.已知.(1)求的值;(2)若且,求sin2α-cosα的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用零点存性定理即可求解.【详解】解析:因为函数单调递增,且,,,,.且所以含有函数零点的区间为.故选:C2、D【解析】由绝对值不等式解法,分类讨论去绝对值,再根据恒成立问题的解法即可求得a的取值范围【详解】根据绝对不等式,分类讨论去绝对值,得所以所以所以选D【点睛】本题考查了绝对值不等式化简方法,恒成立问题的基本应用,属于基础题3、D【解析】首先利用两角和与差的正弦公式将函数化简为,当时,,由正弦型函数的单调性即可求出最值.【详解】当时,,所以最大值与最小值之和为:.故选:D【点睛】本题考查两角和与差的正弦公式,正弦型函数的单调性与最值,属于基础题.4、D【解析】分类参数,将问题转化为求函数在的值域,再利用指数函数的性质进行求解.【详解】将化为,因为关于的方程()的根为负数,所以的取值范围是在的值域,当时,,则,即的取值范围是.故选:D.5、B【解析】逐一判断各数的范围,即找到最大的数.【详解】因为,所以;;;.故最大.故选:B.【点睛】本题考查了根据实数范围比较实数大小,属于基础题.6、D【解析】阴影部分表示的集合为在集合N中去掉集合M,N的交集,即得解.【详解】由维恩图可知,阴影部分表示的集合为在集合N中去掉集合M,N的交集,由题得,所以阴影部分表示的集合为.故选:D【点睛】本题主要考查维恩图,考查集合的运算,意在考查学生对这些知识的理解掌握水平,属于基础题.7、C【解析】由分段函数,选择计算.【详解】由题意可得.故选:C.【点睛】本题考查分段函数的求值,属于简单题.8、B【解析】由题意得,A中,若,则或,又,∴不成立,∴A是错误的;B.若,则,又,∴成立,∴B正确;C.当时,也满足若,∴C错误;D.若,则或为异面直线,∴D错误,故选B考点:空间线面平行垂直的判定与性质.【方法点晴】本题主要考查了空间线面位置关系的判定与证明,其中熟记空间线面位置中平行与垂直的判定定理与性质定理是解得此类问题的关键,着重考查了学生的空间想象能和推理能力,属于基础题,本题的解答中,可利用线面位置关系的判定定理和性质定理判定,也可利用举出反例的方式,判定命题的真假.9、B【解析】因为,所以①为增函数,故=1,故错误②函数为减函数,故,所以正确③函数为增函数,故,故,故正确④函数为增函数,,故,故错误点睛:结合指数函数、对数函数、幂函数单调性可以逐一分析得出四个结论的真假性.10、D【解析】根据对数的运算及性质化简求解即可.【详解】,,,故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】∵,∴,,又⊥∴∴故答案为12、【解析】分和0的大小关系分别代入对应的解析式即可求解结论.【详解】∵函数,∴当,即时,,故;当,即时,,故;∴不等式的解集是:.故答案为:.13、或.【解析】分和两种情况,根据指数函数的单调性确定最大值和最小值,根据已知得到关于实数的方程求解即得.【详解】若,则函数在区间上单调递减,所以,,由题意得,又,故;若,则函数在区间上单调递增,所以,,由题意得,又,故.所以的值为或.【点睛】本题考查函数的最值问题,涉及指数函数的性质,和分类讨论思想,属基础题,关键在于根据指数函数的底数的不同情况确定函数的单调性.14、【解析】由题意可得:,则,据此有,即函数的周期为,设,则,据此可得:,若,则,此时.15、【解析】当时,函数为减函数,且在区间左端点处有令,解得令,解得的值域为,当时,fx=x在,上单调递增,在上单调递减,从而当时,函数有最小值,即为函数在右端点的函数值为的值域为,则实数的取值范围是点睛:本题主要考查的是分段函数的应用.当时,函数为减函数,且在区间左端点处有,当时,在,上单调递增,在上单调递减,从而当时,函数有最小值,即为,函数在右端点的函数值为,结合图象即可求出答案16、1【解析】根据指数函数的图象过定点,即可求出【详解】函数其中且的图象过定点,,,则,故答案为1【点睛】本题考查了指数函数图象恒过定点的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】(1)直接利用诱导公式化简即可;(2)由求出,代入即可求解.【详解】(1)(2)因为为第二象限角,且,所以,所以.18、(Ⅰ)-2;(Ⅱ);(Ⅲ),且【解析】Ⅰ根据三点共线,即可得出,并求出,从而得出,求出;Ⅱ根据即可得出,进行数量积的坐标运算即可求出的值;Ⅲ根据是锐角即可得出,并且不共线,可求出,从而得出,且,解出的范围即可【详解】Ⅰ,B,P三点共线;;;;;Ⅱ;;;Ⅲ若是锐角,则,且不共线;;,且;解得,且;实数的取值范围为,且【点睛】本题主要考查向量平行时的坐标关系,向量平行的定义,以及向量垂直的充要条件,向量数量积的坐标运算,属于中档题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.19、(1),;在淘汰阶段(前轮)的发挥状态更好(2)不是【解析】(1)由平均值的计算公式即可求解均值,比较大小即可作出判断;(2)由(1)及标准差的计算公式求出标准差,根据题意即可作出判断.【小问1详解】解:设前轮得分的均值、后轮得分的均值分别为,由题可知:前轮的均值,后轮的均值,因为,所以,故该选手在淘汰阶段(前轮)的发挥状态更好.【小问2详解】解:由(1)可得,故于是,,,故,因为,所以该选手最后一枪在后轮的个数据中不是正常发挥.20、(1);(2)存在,.【解析】(1)由题可得,代入即得;(2)由题可得函数,,为奇函数且在上单调递减,构造函数,则可得恒成立,进而可得,对恒成立,即求.【小问1详解】∵函数,,∴,∴.【小问2详解】∵,由,得,又在上单调递减,在其定义域上单调递增,∴在上单调递减,又,∴为奇函数且单调递减;∵,又函数在R上单调递增,∴函数在R上单调递减,又,∴函数为奇函数且单调递减;令,则函数在上单调递减,且为奇函数,由,可得,即恒成立,∴,即,对恒成立,故,即,故存在负实数k,使对一切恒成立,k取值集合为.【点睛】关键点点睛:本题的关键是构造奇函数,从而问题转化为,对恒成立,参变分离后即求.21、(1);(2).【解析】(1)利用诱导公式化简可得,代入数据,即可求得答案.(2)根据题意,可得,根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论