版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省兴化市戴泽初中2025届高二数学第一学期期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若抛物线上一点到焦点的距离为5,则点的坐标为()A. B.C. D.2.已知f(x)=x3+(a-1)x2+x+1没有极值,则实数a的取值范围是()A.[0,1] B.(-∞,0]∪[1,+∞)C.[0,2] D.(-∞,0]∪[2,+∞)3.已知命题:抛物线的焦点坐标为;命题:等轴双曲线的离心率为,则下列命题是真命题的是()A. B.C. D.4.函数区间上有()A.极大值为27,极小值为-5 B.无极大值,极小值为-5C.极大值为27,无极小值 D.无极大值,无极小值5.2021年是中国共产党百年华诞,3月24日,中宣部发布中国共产党成立100周年庆祝活动标识(图1),标识由党徽、数字“100”“1921”“2021”和56根光芒线组成,生动展现中国共产党团结带领中国人民不忘初心、牢记使命、艰苦奋斗的百年光辉历程.其中“100”的两个“0”设计为两个半径为的相交大圆,分别内含一个半径为1的同心小圆,且同心小圆均与另一个大圆外切(图2).已知,在两大圆的区域内随机取一点,则该点取自两大圆公共部分的概率为()A. B.C. D.6.已知抛物线的焦点为F,且点F与圆上点的距离的最大值为6,则抛物线的准线方程为()A. B.C. D.7.方程表示的曲线是A.两条直线 B.两条射线C.两条线段 D.一条直线和一条射线8.现有60瓶饮料,编号从1到60,若用系统抽样的方法从中抽取6瓶进行检验,则所抽取的编号可能为()A.3,13,23,33,43,53 B.2,14,26,38,40,52C.5,8,31,36,48,54 D.5,10,15,20,25,309.(2016新课标全国Ⅱ理科)已知F1,F2是双曲线E:的左,右焦点,点M在E上,MF1与轴垂直,sin,则E的离心率为A. B.C. D.210.在长方体中,,,则异面直线与所成角的正弦值是()A. B.C. D.11.直线l:的倾斜角为()A. B.C. D.12.已知正方形ABCD的边长为2,E,F分别为CD,CB的中点,分别沿AE,AF将三角形ADE,ABF折起,使得点B,D恰好重合,记为点P,则AC与平面PCE所成角等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数f(x)=x3-3x2+2,则函数f(x)的极大值为______14.已知两平行直线与间的距离为3,则C的值是________.15.已知双曲线的左、右焦点分别为,双曲线左支上点满足,则的面积为_________16.已知等比数列满足,则_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知中心在坐标原点O的椭圆,左右焦点分别为,,离心率为,M,N分别为椭圆的上下顶点,且满足.(1)求椭圆方程;(2)已知点C满足,点T在椭圆上(T异于椭圆的顶点),直线NT与以C为圆心的圆相切于点P,若P为线段NT的中点,求直线NT的方程;(3)过椭圆内的一点D(0,t),作斜率为k的直线l,与椭圆交于A,B两点,直线OA,OB的斜率分别是,,若对于任意实数k,存在实数m,使得,求实数m的取值范围.18.(12分)已知椭圆:()的左、右焦点分别为,焦距为,过点作直线交椭圆于两点,的周长为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆相交于两点,求定点与交点所构成的三角形面积的最大值.19.(12分)如图,在四棱锥P-ABCD中,底面四边形ABCD为直角梯形,,,,O为BD的中点,,(1)证明:平面ABCD;(2)求平面PAD与平面PBC所成锐二面角的余弦值20.(12分)已知两个定点,,动点满足,设动点的轨迹为曲线,直线:(1)求曲线的轨迹方程;(2)若与曲线交于不同的、两点,且(为坐标原点),求直线的斜率;21.(12分)已知数列的前项和为,且,(1)求的通项公式;(2)求的最小值22.(10分)已知平面直角坐标系上一动点满足:到点的距离是到点的距离的2倍.(1)求点的轨迹方程;(2)若点与点关于直线对称,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设,由抛物线的方程可得准线方程为,由抛物线的性质到焦点的距离等于到准线的距离,求出,解出纵坐标,进而求出【详解】由题意可得,解得,代入抛物线的方程,解得,所以的坐标,故选:C.2、C【解析】求导得,再解不等式即得解.【详解】由得,根据题意得,解得故选:C3、D【解析】求出的焦点坐标,及等轴双曲线的离心率,判断出为假命题,q为真命题,进而判断出答案.【详解】抛物线的焦点坐标为,故命题为假命题;命题:等轴双曲线中,,所以离心率为,故命题q为真命题,所以为真命题,其他选项均为假命题.故选:D4、B【解析】求出得出的单调区间,从而可得答案.【详解】当时,,单调递减.当时,,单调递增.所以当时,取得极小值,极小值为,无极大值.故选:B5、B【解析】求出两圆相交公共部分两个弓形面积,结合两圆面积可得概率【详解】如图,是两圆心,是两圆交点坐标,四边形边长均为,又,所以,所以,四边形是正方形,,弓形面积为,两个弓形面积为,两圆涉及部分面积为所以所求概率为故选:B6、D【解析】先求得抛物线的焦点坐标,再根据点F与圆上点的距离的最大值为6求解.【详解】因为抛物线的焦点为F,且点F与圆上点的距离的最大值为6,所以,解得,所以抛物线准线方程为,故选:D7、D【解析】由,得2x+3y−1=0或.即2x+3y−1=0(x⩾3)为一条射线,或x=4为一条直线.∴方程表示的曲线是一条直线和一条射线.故选D.点睛:在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线在求解方程时要注意变量范围.8、A【解析】求得组距,由此确定正确选项.【详解】,即组距为,A选项符合,其它选项不符合.故选:A9、A【解析】由已知可得,故选A.考点:1、双曲线及其方程;2、双曲线的离心率.【方法点晴】本题考查双曲线及其方程、双曲线的离心率.,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.由已知可得,利用双曲线的定义和双曲线的通径公式,可以降低计算量,提高解题速度.10、C【解析】连接,可得,得到异面直线与所成角即为直线与所成角,设,设,求得的值,在中,利用余弦定理,即可求解.【详解】如图所示,连接,在正方体中,可得,所以异面直线与所成角即为直线与所成角,设,由在长方体中,,,设,可得,在直角中,可得,在中,可得,所以,因为,所以.故选:C.11、D【解析】先求得直线的斜率,由此求得倾斜角.【详解】依题意,直线的斜率为,倾斜角的范围为,则倾斜角为.故选:D.12、A【解析】如图,以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,利用空间向量求解【详解】由题意得,因为正方形ABCD的边长为2,E,F分别为CD,CB的中点,所以,所以,所以所以PA,PE,PF三线互相垂直,故以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,则,,,,设,则由,,,得,解得,则设平面的法向量为,则,令,则,因为,所以AC与平面PCE所成角的正弦值,因为AC与平面PCE所成角为锐角,所以AC与平面PCE所成角为,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】利用导数研究函数的单调区间,从而得到极大值.【详解】,令,解得:,00极大值极小值所以当时,函数取得极大值,即函数的极大值为.故答案为:14、【解析】根据两条平行直线之间的距离公式即可得解.【详解】两平行直线与间的距离为3,所以,所以故答案为:15、3【解析】由双曲线方程可得,利用双曲线定义,以及直角三角形的勾股定理可得,由此求得答案.【详解】由双曲线的左、右焦点分别为,双曲线左支上点满足,可得:,则,且,故,所以,故,故答案为:316、84【解析】设公比为q,求出,再由通项公式代入可得结论【详解】设公比为q,则,解得所以故答案为:84三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1(2)或(3)【解析】(1)由已知可得,,再结合可求出,从而可求得椭圆方程,(2)设直线,代入椭圆方程中消去,解方程可求出点的坐标,从而可得NT中点的坐标,而,可得解方程可求出的值,即可得到直线NT的方程,(3)设直线,代入椭圆方程中消去,利用根与系数的关系结合直线的斜率公式可得,再由,可求出m的取值范围【小问1详解】设(c,0),M(0,b),N(0,b),①,又②,③,由①②③得,所以椭圆方程为1.【小问2详解】由题C,0),设直线联立得,那么,N(0,)NT中点.所以,因为直线NT与以C为圆心的圆相切于点P,所以所以所以得,解得或所以直线NT为:或.【小问3详解】设直线,联立方程得设A(,),B,),则…由对任意k成立,得点D在椭圆内,所以,所以,所以m的取值范围为.18、(1)(2)【解析】(1)根据题意可得,,再由,即可求解.(2)设直线的方程为,将直线与椭圆方程联立求得关于的方程,利用弦长公式求出,再利用点到直线的距离求出点到直线的距离,利用三角形的面积公式配方即可求解.【详解】解(1)由题意得:,,∴,∴∴椭圆的方程为(2)∵直线的斜率为,∴可设直线的方程为与椭圆的方程联立可得:①设两点的坐标为,由韦达定理得:,∴点到直线的距离,∴由①知:,,令,则,∴令,则在上的最大值为∴的最大值为综上所述:三角形面积的最大值2.【点睛】本题考查了根据求椭圆的标准方程,考查了直线与椭圆额位置关系中三角形面积问题,考查了学生的计算能力,属于中档题.19、(1)见解析(2)【解析】(1)连接,利用勾股定理证明,又可证明,根据线面垂直的判定定理证明即可;(2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面和平面的法向量,由向量的夹角公式求解即可小问1详解】证明:如图,连接,在中,由,可得,因为,,所以,,因为,,,则,故,因为,,,平面,则平面;【小问2详解】解:由(1)可知,,,两两垂直,以点为坐标原点,建立空间直角坐标系如图所示,则,0,,,0,,,0,,,2,,,0,,所以,则,,,又,设平面的法向量为,则,令,则,,故,设平面的法向量为,因为,所以,令,则,,故,所以,故平面与平面所成锐二面角的余弦值为20、(1);(2)【解析】(1)设点的坐标为,由,结合两点间的距离公式,列出式子,可求出轨迹方程;(2)易知,且,可求出到直线的距离,结合点到直线的距离为,可求出直线的斜率【详解】(1)设点的坐标为,由,可得,整理得,所以所求曲线的轨迹方程为(2)依题意,,且,在△中,,取的中点,连结,则,所以,即点到直线:的距离为,解得,所以所求直线斜率为【点睛】本题考查轨迹方程,考查直线的斜率,考查两点间的距离公式、点到直线的距离公式的应用,考查学生的计算求解能力,属于基础题.21、(1)(2)【解析】(1)由可求得的值,由可求得数列的通项公式;(2)求得,利用二次函数的基本性质可求得的最小值.【小问1详解】解:由题意可得,解得,所以,.当时,,当时,,也满足,故对任意的,.【小问2详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国升华转移烫画数据监测研究报告
- 太保采购合同范本
- 2024年铝棒材项目可行性研究报告
- 2024年中国轻钢别墅构造体市场调查研究报告
- 直播培训合同范本
- 俱乐部合伙合同范本
- 年度中药饮片战略市场规划报告
- 年度宽带无线接入网市场分析及竞争策略分析报告
- 广东省揭阳市揭西河婆中学2025届物理高一上期中学业质量监测模拟试题含解析
- 湖南省洞口县第四中学2025届高三物理第一学期期末达标检测模拟试题含解析
- 2019新教材人教版生物必修1教材课后习题答案
- 2024年中国白酒行业数字化转型研究报告-36氪-202409
- 《学校主人公:3 校园广播站》教学设计-2024-2025学年五年级上册综合实践活动沪科黔科版
- 外伤急救包扎技术说课课件
- 人教版(2024新版)七年级上册英语全册语法知识点讲义
- 全国青岛版信息技术七年级下册专题一第8课三、《高级统计-数据透视表》教学设计
- 内分泌科品管圈成果汇报提高糖尿病患者健康教育知晓率
- 2024年秋季新人教版七年级数学上册教学课件 第五章 一元一次方程 5.3实际问题与一元一次方程(第4课时)
- 清淡的晚餐(课件)六年级上册劳动北京版
- 妇科内分泌疾病诊断与治疗考核试卷
- 城镇雨污分流项目可行性研究报告
评论
0/150
提交评论