江西省宜春市靖安县2025届高二上数学期末综合测试试题含解析_第1页
江西省宜春市靖安县2025届高二上数学期末综合测试试题含解析_第2页
江西省宜春市靖安县2025届高二上数学期末综合测试试题含解析_第3页
江西省宜春市靖安县2025届高二上数学期末综合测试试题含解析_第4页
江西省宜春市靖安县2025届高二上数学期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省宜春市靖安县2025届高二上数学期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,已知直线AO垂直于平面,垂足为O,BC在平面内,AB与平面所成角的大小为,,,则异面直线AB与OC所成角的余弦值为()A. B.C. D.2.如图,在四面体OABC中,,,,点在线段上,且,为的中点,则等于()A. B.C. D.3.已知抛物线,,点在抛物线上,记点到直线的距离为,则的最小值是()A.5 B.6C.7 D.84.某种疾病的患病率为0.5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人验血结果为阳性,患者中有2%的人验血结果为阴性,随机抽取一人进行验血,则其验血结果为阳性的概率为()A.0.0689 B.0.049C.0.0248 D.0.025.设抛物线的焦点为,点为抛物线上一点,点坐标为,则的最小值为()A. B.C. D.6.已知函数的导函数为,若的图象如图所示,则函数的图象可能是()A B.C. D.7.设,,,则,,大小关系是A. B.C. D.8.已知空间向量,,则()A. B.19C.17 D.9.曲线的离心率为()A. B.C. D.10.若:,:,则为q的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分又不必要条件11.已知数列是首项为,公差为1的等差数列,数列满足.若对任意的,都有成立,则实数的取值范围是()A., B.C., D.12.甲、乙、丙、丁四人站成一列,要求甲站在最前面,则不同的排法有()A.24种 B.6种C.4种 D.12种二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的左、右焦点为,,直线与双曲线交于两点,且,为坐标原点,又,则该双曲线的离心率为__________.14.某学校为了获得该校全体高中学生的体有锻炼情况,按照男、女生的比例分别抽样调查了55名男生和45名女生的每周锻炼时间,通过计算得到男生每周锻炼时间的平均数为8小时,方差为6;女生每周锻炼时间的平均数为6小时,方差为8.根据所有样本的方差来估计该校学生每周锻炼时间的方差为________15.已知空间向量,,则向量在向量上的投影向量的坐标是__________16.已知直线与垂直,则m的值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:的长轴长为,P是椭圆上异于顶点的一个动点,O为坐标原点,A为椭圆C的上顶点,Q为PA的中点,且直线PA与直线OQ的斜率之积恒为-2.(1)求椭圆C的方程;(2)若斜率为k且过上焦点F的直线l与椭圆C相交于M,N两点,当点M,N到y轴距离之和最大时,求直线l的方程.18.(12分)已知函数.(1)当时,求的最大值和最小值;(2)说明的图象由函数的图象经过怎样的变换得到?19.(12分)设函数.(1)求在处的切线方程;(2)求的极小值点和极大值点.20.(12分)已知椭圆的离心率为,点是椭圆E上一点.(1)求E的方程;(2)设过点的动直线与椭圆E相交于两点,O为坐标原点,求面积的取值范围.21.(12分)已知椭圆C:的离心率为,短轴的一个端点到右焦点的距离为2.(1)椭圆C的方程;(2)设直线l:交椭圆C于A,B两点,且,求m的值.22.(10分)已知为坐标原点,椭圆:的左、右焦点分别为,,右顶点为,上顶点为,若,,成等比数列,椭圆上的点到焦点的距离的最大值为求椭圆的标准方程;过该椭圆的右焦点作两条互相垂直的弦与,求的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】建立空间直角坐标系,求出相关点的坐标,求出向量的坐标,再利用向量的夹角公式计算即可.【详解】如图,以O为坐标原点,过点O作OB的垂线为x轴,OB为y轴,OA为z轴,建立空间直角坐标系,设,则,,则,,,,,设的夹角为,则,所以异面直线AB与OC所成角的余弦值为,故选:B.2、D【解析】利用空间向量的加法与减法可得出关于、、的表达式.【详解】.故选:D.3、D【解析】先求出抛物线的焦点和准线,利用抛物线的定义将转化为的距离,即可求解.【详解】由已知得抛物线的焦点为,准线方程为,设点到准线的距离为,则,则由抛物线的定义可知∵,当点、、三点共线时等号成立,∴,故选:.4、C【解析】根据全概率公式即可求出【详解】随机抽取一人进行验血,则其验血结果为阳性的概率为0.0248故选:C5、B【解析】设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,进而把问题转化为求|PM|+|PD|的最小值,即可求解【详解】解:由题意,设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,所以要求|PM|+|PF|的最小值,即求|PM|+|PD|的最小值,当D,P,M三点共线时,|PM|+|PD|取得最小值为故选:B6、D【解析】根据导函数大于,原函数单调递增;导函数小于,原函数单调递减;即可得出正确答案.【详解】由导函数得图象可得:时,,所以在单调递减,排除选项A、B,当时,先正后负,所以在先增后减,因选项C是先减后增再减,故排除选项C,故选:D.7、A【解析】构造函数,根据的单调性可得(3),从而得到,,的大小关系【详解】考查函数,则,在上单调递增,,(3),即,,故选:【点睛】本题考查了利用函数的单调性比较大小,考查了构造法和转化思想,属基础题8、D【解析】先求出的坐标,再求出其模【详解】因为,,所以,故,故选:D.9、C【解析】由曲线方程直接求离心率即可.【详解】由题设,,,∴离心率.故选:C.10、D【解析】根据充分条件和必要条件的定义即可得出答案.【详解】解:因为:,:,所以,所以为q的既不充分又不必要条件.故选:D.11、D【解析】由等差数列通项公式得,再结合题意得数列单调递增,且满足,,即,再解不等式即可得答案.【详解】解:根据题意:数列是首项为,公差为1的等差数列,所以,由于数列满足,所以对任意的都成立,故数列单调递增,且满足,,所以,解得故选:12、B【解析】由已知可得只需对剩下3人全排即可【详解】解:甲、乙、丙、丁四人站成一列,要求甲站在最前面,则只需对剩下3人全排即可,则不同的排法共有,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据直线和双曲线的对称性,结合圆的性质、双曲线的定义、三角形面积公式、双曲线离心率公式进行求解即可.【详解】由直线与双曲线的对称性可知,点与点关于原点对称,在三角形中,,所以,是以为直径的圆与双曲线的交点,不妨设在第一象限,,因为圆是以为直径,所以圆的半径为,因为点在圆上,也在双曲线上,所以有,联立化简可得,整理得,,所以,由所以,又因为,联立可得,,因为为圆的直径,所以,即,,所以离心率.故答案为:【点睛】关键点睛:利用直线和双曲线的对称性,结合圆的性质进行求解是解题的关键.14、【解析】先求出100名学生每周锻炼的平均时间,然后再求这100名学生每周锻炼时间的方差,从而可估计该校学生每周锻炼时间的方差【详解】由题意可得55名男生和45名女生的每周锻炼时间的平均数为小时,因为55名男生每周锻炼时间的方差为6;45名女生每周锻炼时间的方差为8,所以这100名学生每周锻炼时间的方差为,所以该校学生每周锻炼时间的方差约为,故答案为:15、【解析】根据投影向量概念求解即可.【详解】因为空间向量,,所以,,所以向量在向量上投影向量为:,故答案为:.16、0或-9##-9或0【解析】根据给定条件利用两直线互相垂直的性质列式计算即得.【详解】因直线与垂直,则有,解得或,所以m的值为0或-9.故答案为:0或-9三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设点,求出直线、直线的斜率相乘可得,结合可得答案;(2)设直线l的方程为与椭圆方程联立,代入得,设,再利用基本不等式可得答案.【小问1详解】由题意可得,,即,则,设点,∵Q为的中点,∴,∴直线斜率,直线的斜率,∴,又∵,∴,则,解得,∴椭圆C的方程为.【小问2详解】由(1)知,设直线l的方程为,联立化简得,,设,则,易知M,N到y轴的距离之和为,,设,∴,当且仅当即时等号成立,所以当时取得最大值,此时直线l的方程为.18、(1)2,;(2)答案见解析.【解析】(1)根据,求出范围,再根据正弦函数的图像即可求值域;(2)根据正弦函数图像变换对解析式的影响即可求解.【小问1详解】当时,有,可得,故,则的最大值为2,最小值为.【小问2详解】先将函数的图象向右平移个单位长度,得到函数的图象;然后把所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到函数的图象;最后把所得图象上各点的横坐标不变,纵坐标伸长为原来的2倍,这时得到的就是函数的图象.19、(1);(2)极大值点,极小值点.【解析】(1)求函数的导数,利用函数的导数求出切线的斜率,结合切点坐标,然后求解切线方程;(2)利用导数研究f(x)的单调性,判断函数的极值点即可【小问1详解】函数,函数的导数为,,在处的切线方程:,即【小问2详解】令,,解得,当时,可得,即的单调递减区间,或,可得,∴函数单调递增区间,,的极大值点,极小值点20、(1);(2).【解析】(1)列出关于a、b、c的方程组即可求解;(2)根据题意,直线l斜率存在,设其方程为,代入椭圆方程消去y得到关于x的二次方程,根据韦达定理得到根与系数的关系,求出PQ长度,求出原点到l的距离,根据三角形面积公式表示出△OPQ的面积,利用基本不等式求解其范围即可.【小问1详解】由题设知,解得.∴椭圆E的方程为;【小问2详解】当轴时不合题意,故可设,则,得.由题意知,即,得.从而.又点O到直线的距离,∴,令,则,,,所求面积的取值范围为.21、(1);(2).【解析】(1)通过短轴的一个端点到右焦点的距离可知,进而利用离心率的值计算即得结论;(2)设,联立直线与椭圆方程,消去y得到关于x的一元二次方程,得到根与系数的关系,再利用弦长公式即可得出.【详解】解:(1)由题意可得,解得:,,椭圆C的方程为;(2)设,联立,得,,,,解得.【点睛】本题考查了椭圆的标准方程及其性质、韦达定理、弦长公式,属于中档题.22、(1)(2)【解析】根据,,成等比数列,椭圆上的点到焦点的距离的最大值为.列出关于、、的方程组,求出、的值,即可得出椭圆的方程;对直线和分两种情况讨论:一种是两条直线与坐标轴垂直,可求出两条弦长度之和;二是当两条直线斜率都存在时,设直线的方程为,将直线方程与椭圆方程联立,列出韦达定理,利用弦长公式可计算出的长度的表达式,然后利用相应的代换可求出的长度表达式,将两线段长度表达式相加,利用函数思想可求出两条弦长的取值范围最后将两种情况的取值范围进行合并即可得出答案【详解】易知,得,则,而,又,得,,因此,椭圆C的标准方程为;当两条直线中有一条斜率为0时,另一条直线的斜率不存在,由题意易得;当两条直线斜率都存在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论