版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市高东中学高二上数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.饕餮(tāotiè)纹,青铜器上常见的花纹之一,盛行于商代至西周早期,最早出现在距今五千年前长江下游地区的良渚文化玉器上.有人将饕餮纹的一部分画到了方格纸上,如图所示,每个小方格的边长为,有一点从点出发每次向右或向下跳一个单位长度,且向右或向下跳是等可能性的,那么它经过次跳动后恰好是沿着饕餮纹的路线到达点的概率为()A. B.C. D.2.在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做“等和数列”,这个数叫做数列的公和.已知等和数列{an}中,,公和为5,则()A.2 B.﹣2C.3 D.﹣33.下列说法中正确的是()A.棱柱的侧面可以是三角形B.棱台的所有侧棱延长后交于一点C.所有几何体的表面都能展开成平面图形D.正棱锥的各条棱长都相等4.已知过抛物线焦点的直线交抛物线于,两点,则的最小值为()A. B.2C. D.35.已知命题:,;命题:在中,若,则,则下列命题为真命题的是()A. B.C. D.6.双曲线的渐近线方程为()A. B.C. D.7.某种疾病的患病率为0.5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人验血结果为阳性,患者中有2%的人验血结果为阴性,随机抽取一人进行验血,则其验血结果为阳性的概率为()A.0.0689 B.0.049C.0.0248 D.0.028.若直线l的倾斜角是钝角,则l的方程可能是()A. B.C. D.9.已知直线和互相平行,则实数的取值为()A或3 B.C. D.1或10.已知直线、的方向向量分别为、,若,则等于()A.1 B.2C.0 D.311.已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为()A. B.C. D.12.已知直线与直线平行,且直线在轴上的截距比在轴上的截距大,则直线的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.椭圆的左、右焦点分别为,,为坐标原点,则以下说法正确的是()A.过点的直线与椭圆交于,两点,则的周长为8B.椭圆上存在点,使得C.椭圆的离心率为D.为椭圆上一点,为圆上一点,则点,的最大距离为314.已知圆关于直线对称,则________15.若,均为正数,且,(1)的最大值为;(2)的最小值为;(3)的最小值为;(4)的最小值为,则结论正确的是__________16.已知是双曲线的左焦点,圆与双曲线在第一象限的交点,若的中点在双曲线的渐近线上,则此双曲线的离心率是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为正方形,,直线垂直于平面分别为的中点,直线与相交于点.(1)证明:与不垂直;(2)求二面角的余弦值.18.(12分)已知函数.(1)若函数的图象在处的切线方程为,求的值;(2)若函数在上是增函数,求实数的最大值.19.(12分)设椭圆:()的离心率为,椭圆上一点到左右两个焦点、的距离之和是4.(1)求椭圆的方程;(2)已知过的直线与椭圆交于、两点,且两点与左右顶点不重合,若,求四边形面积的最大值.20.(12分)已知函数(1)当在处取得极值时,求函数的解析式;(2)当的极大值不小于时,求的取值范围21.(12分)如图1是,,,,分别是边,上两点,且,将沿折起使得,如图2.(1)证明:图2中,平面;(2)图2中,求二面角的正切值.22.(10分)在如图所示的几何体中,四边形ABCD为正方形,平面ABCD,,,.(1)求证:平面PAD;(2)求直线AB与平面PCE所成角的正弦值;
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】本题首先可根据题意列出次跳动的所有基本事件,然后找出沿着饕餮纹的路线到达点的事件,最后根据古典概型的概率计算公式即可得出结果.【详解】点从点出发,每次向右或向下跳一个单位长度,次跳动的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿着饕餮纹的路线到达点的事件有:(下,下,右),故到达点的概率,故选:B.2、C【解析】利用已知即可求得,再利用已知可得:,问题得解【详解】解:根据题意,等和数列{an}中,,公和为5,则,即可得,又由an﹣1+an=5,则,则3;故选C【点睛】本题主要考查了新概念知识,考查理解能力及转化能力,还考查了数列的周期性,属于中档题3、B【解析】根据棱柱、棱台、球、正棱锥结构特征依次判断选项即可.【详解】棱柱的侧面都是平行四边形,A不正确;棱台是由对应的棱锥截得的,B正确;不是所有几何体的表面都能展开成平面图形,例如球不能展开成平面图形,C不正确;正棱锥的各条棱长并不是都相等,应该为正棱锥的侧棱长都相等,所以D不正确.故选:B.4、D【解析】设出直线方程,联立抛物线方程,得到韦达定理,求得,利用抛物线定义,将目标式转化为关于的代数式,消元后,利用基本不等式即可求得结果.【详解】因为抛物线的焦点的坐标为,显然要满足题意,直线的斜率存在,设直线的方程为联立可得,其,设坐标为,显然,则,,根据抛物线定义,MF=故=4+4令,故4+4当且仅当,即时取得最小值.故选:D.【点睛】本题考察抛物线中的最值问题,涉及到韦达定理的使用,基本不等式的使用;其中利用的关系,以及抛物线的定义转化目标式,是解决问题的关键.5、C【解析】分别求得的真假性,从而确定正确答案.【详解】对于,由于,所以为假命题,为真命题.对于,在三角形中,,由正弦定理得,所以为真命题,为假命题.所以为真命题,、、为假命题.故选:C6、B【解析】把双曲线的标准方程中的1换成0,可得其渐近线的方程【详解】双曲线的渐近线方程是,即,故选B【点睛】本题考查了双曲线的标准方程与简单的几何性质等知识,属于基础题7、C【解析】根据全概率公式即可求出【详解】随机抽取一人进行验血,则其验血结果为阳性的概率为0.0248故选:C8、A【解析】根据直线方程,求得直线斜率,再根据倾斜角和斜率的关系,即可判断和选择.【详解】若直线的倾斜角为,则,当时,为钝角,当,,当,为锐角;当不存在时,倾斜角为,对A:,显然倾斜角为钝角;对B:,倾斜角为锐角;对C:,倾斜角为锐角;对D:不存在,此时倾斜角为直角.故选:A.9、B【解析】利用两直线平行的等价条件求得实数m的值.【详解】∵两条直线x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故选B【点睛】已知两直线的一般方程判定两直线平行或垂直时,记住以下结论,可避免讨论:已知,,则,10、C【解析】由可得出,利用空间向量数量积的坐标运算可得出关于实数的等式,由此可解得实数的值.【详解】若,则,所以,所以,解得.故选:C11、A【解析】由题得c=1,再根据△MF2N的周长=4a=8得a=2,进而求出b的值得解.【详解】∵F1(-1,0),F2(1,0)是椭圆的两个焦点,∴c=1,又根据椭圆的定义,△MF2N的周长=4a=8,得a=2,进而得b=,所以椭圆方程为.故答案为A【点睛】本题主要考查椭圆的定义和椭圆方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.12、A【解析】分析可知直线不过原点,可设直线的方程为,其中且,利用斜率关系可求得实数的值,化简可得直线的方程.【详解】若直线过原点,则直线在两坐标轴上的截距相等,不合乎题意,设直线的方程为,其中且,则直线的斜率为,解得,所以,直线的方程为,即.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、ABD【解析】结合椭圆定义判断A选项的正确性,结合向量数量积的坐标运算判断B选项的正确性,直接法求得椭圆的离心率,由此判断C选项的正确性,结合两点间距离公式判断D选项的正确性.【详解】对于选项:由椭圆定义可得:,因此的周长为,所以选项正确;对于选项:设,则,且,又,,所以,,因此,解得,,故选项正确;对于选项:因为,,所以,即,所以离心率,所以选项错误;对于选项:设,,则点到圆的圆心的距离为,因为,所以,所以选项正确,故选:ABD14、1【解析】根据题意,圆心在直线上,进而求得答案.【详解】由题意,圆心在直线上,则.故答案为:1.15、(1)(2)(4).【解析】利用基本不等式求的最大值可判断(1);利用“”的妙用以及基本不等式可判断(2);将所求代数式转化为关于的二次函数结合由二次函数的性质可得最值判断C、D,进而可得正确答案.【详解】对于(1):因为,均为正数,且,则有,当且仅当时等号成立,即的最大值为,故(1)正确;对于(2):因为,当且仅当时等号成立,即的最小值为,故(2)正确;对于(3):因为,所以,在上单调递减,无最小值,故(3)不正确;对于(4):,当且仅当时等号成立,即的最小值为,故(4)正确.故答案为:(1)(2)(4).16、【解析】计算点渐近线的距离,从而得,由勾股定理计算,由双曲线定义列式,从而计算得,即可计算出离心率.【详解】设双曲线右焦点为,因为的中点在双曲线的渐近线上,由可知,,因为为中点,所以,所以,即垂直平分线段,所以到渐近线的距离为,可得,所以,由双曲线定义可知,,即,所以,所以.故答案为:【点睛】双曲线的离心率是椭圆最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,求出点的坐标,计算得出,即可证得结论成立;或利用反证法;(2)利用空间向量法即求.【小问1详解】方法一:如图以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、设,因为,,因为,所以,得,即点,因为,,所以,故与不垂直方法二:假设与垂直,又直线平面平面,所以.而与相交,所以平面又平面,从而又已知是正方形,所以与不垂直,这产生矛盾,所以假设不成立,即与不垂直得证.【小问2详解】设平面的法向量为,又,因为,所以,令,得.设平面的法向量为,因为,所以,令,得.因为.显然二面角为钝二面角,所以二面角的余弦值是.18、(1);(2).【解析】(1)先对函数求导,再根据在处的切线斜率可得到参数的值,然后代入,求出的值,则即可得出;(2)根据函数在上是增函数,可得,即恒成立,再进行参变分离,构造函数,对进行求导分析,找出最小值,即实数的最大值【详解】解:(1)由题意,函数.故,则,由题意,知,即.又,则.,即..(2)由题意,可知,即恒成立,恒成立.设,则.令,解得.令,解得.令,解得x.在上单调递减,在上单调递增,在处取得极小值..,故的最大值为.【点睛】本题主要考查利用某点处的一阶导数分析得出参数的值,参变量分离方法的应用,不等式的计算能力.本题属中档题19、(1);(2)6.【解析】(1)本小题根据题意先求,,,再求椭圆的标准方程;(2)本小题先设过的直线的方程,再根据题意表示出四边形的面积,最后求最值即可.【详解】解:(1)∵椭圆上一点到左右两个焦点、的距离之和是4,∴即,∵,∴,又∵,∴.∴椭圆的标准方程为;(2)设点、的坐标为,,因为直线过点,所以可设直线方程为,联立方程,消去可得:,化简整理得,其中,所以,,因为,所以四边形是平行四边形,设平面四边形的面积为,则,设,则(),所以,因为,所以,,所以四边形面积的最大值为6.【点睛】本题考查椭圆的标准方程,相交弦等问题,是偏难题.20、(1);(2).【解析】(1)对函数求导,根据求出m,并验证此时函数在x=1处取得极值,进而求得答案;(2)对函数求导,进而求出函数的单调区间和极大值,然后求出m的范围.【小问1详解】因为,所以.因为在处取得极值,所以,所以,此时,时,,单调递减,时,,单调递增,即在处取得极小值,故.【小问2详解】,令,解得.时,,单调递增,时,,单调递减,时,,单调递增.,即的取值范围是.21、(1)证明见解析(2)【解析】(1)、利用线面垂直的判定,及线面垂直的性质即可证明;(2)、建立空间直角坐标系,分别求出平面、平面的法向量,利用求出两平面所成角的余弦值,进而求出求二面角的正切值.【小问1详解】由已知得:,平面,又平面,在中,,由余弦定理得:,,即,平面.【小问2详解】由(1)知:平面,以为坐标原点,建
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024项目投资协议补充:跨境电商合作补充协议3篇
- 专业高空作业项目协议样本2024
- 2024年糕点模具创意制作协议
- 专项股权收购:2024年合作框架协议样本版B版
- 市第五医院科研、论文学术规范承诺书
- 职业学院教育教学研究项目结题报告书
- 6《记录我的一天》大单元整体设计(说课稿)-2024-2025学年一年级上册数学北师大版
- 专车接送乘客合同范本
- 2024年桥梁工程分包合同范本
- 深度洞察研究之旅
- 美的稳健增长法阅读札记
- DB11∕501-2017 大气污染物综合排放标准
- 四川省住宅设计标准
- 建筑幕墙物理性能分级
- 河南省2024年道法中考热点备考重难专题:发展航天事业建设航天强国(课件)
- 临床诊疗规范与操作指南制度
- YB-T6115-2023《焦炉煤气脱硫废液干法制酸技术规范》
- 新员工入职培训测试题附有答案
- Q-GDW 738-2012 配电网规划设计技术导则及编制说明
- 经编结构与编织原理课件
- 2023年矿井应急救援理论考试试题及答案
评论
0/150
提交评论