版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
漳州市重点中学2025届数学高一上期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集,,,则集合A. B.C. D.2.已知圆锥的底面半径为,当圆锥的体积为时,该圆锥的母线与底面所成角的正弦值为()A. B.C. D.3.已知函数在上是增函数,则实数的取值范围是A. B.C. D.4.在中,,,则的值为A. B.C.2 D.35.符号函数是一个很有用的函数,符号函数能够把函数的符号析离出来,其表达式为若定义在上的奇函数,当时,,则的图象是()A. B.C. D.6.若函数则下列说法错误的是()A.是奇函数B.若在定义域上单调递减,则或C.当时,若,则D.若函数有2个零点,则7.已知函数,是函数的一个零点,且是其图象的一条对称轴.若是的一个单调区间,则的最大值为A.18 B.17C.15 D.138.已知,且,则下列不等式一定成立的是()A. B.C. D.9.在上,满足的的取值范围是()A. B.C. D.10.下列四个函数中,与函数相等的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正实数a,b满足,则的最小值为___________.12.若函数满足以下三个条件:①定义域为R且函数图象连续不断;②是偶函数;③恰有3个零点.请写出一个符合要求的函数___________.13.若命题“”为真命题,则的取值范围是______14.已知函数,现有如下几个命题:①该函数为偶函数;
②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数值域为.其中正确命题的编号为______15.圆柱的高为1,它的两个底面在直径为2的同一球面上,则该圆柱的体积为____________;16.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.现有两名剪纸艺人创作甲、乙两种作品,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名艺人上午创作的甲作品数和乙作品数,点Bi的横、纵坐标分别为第i名艺人下午创作的甲作品数和乙作品数,i=1,①该天上午第1名艺人创作的甲作品数比乙作品数少;②该天下午第1名艺人创作的乙作品数比第2名艺人创作的乙作品数少;③该天第1名艺人创作的作品总数比第2名艺人创作的作品总数少;④该天第2名艺人创作的作品总数比第1名艺人创作的作品总数少.其中所有正确结论序号是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,三棱柱中,点是的中点.(1)求证:平面;(2)若平面,,,,求二面角的大小.18.已知函数,(其中)(1)求函数的值域;(2)如果函数在恰有10个零点,求最小正周期的取值范围19.求解下列问题(1)化简(其中各字母均为正数):;(2)化简并求值:20.已知函数(1)求函数的对称中心和单调递减区间;(2)若将函数的图象上每一点向右平移个单位得到函数的图象,求函数在区间上的值域21.已知函数⑴判断并证明函数的奇偶性;⑵若,求实数的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】因为A∪B={x|x≤0或x≥1},所以,故选D.考点:集合的运算.2、A【解析】首先理解圆锥体中母线与底面所成角的正弦值为它的高与母线的比值,结合圆锥的体积公式及已知条件即可求出正弦值.【详解】如图,根据圆锥的性质得底面圆,所以即为母线与底面所成角,设圆锥的高为,则由题意,有,所以,所以母线的长为,则圆锥的母线与底面所成角的正弦值为.故选:A【点睛】本题考查了圆锥的体积,线面角的概念,考查运算求解能力,是基础题.本题解题的关键在于根据圆锥的性质得即为母线与底面所成角,再根据几何关系求解.3、A【解析】当时,在上是增函数,且恒大于零,即当时,在上是减函数,且恒大于零,即,因此选A点睛:1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”
函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反4、A【解析】如图,,又,∴,故.选A5、C【解析】根据函数的奇偶性画出的图象,结合的知识确定正确答案.【详解】依题意,是定义在上的奇函数,图象关于原点对称.当时,,结合的奇偶性,作出的大致图象如下图所示,根据的定义可知,选项C符合题意.故选:C6、D【解析】A利用奇偶性定义判断;B根据函数的单调性,列出分段函数在分段区间的界点上函数值的不等关系求参数范围即可;C利用函数单调性求解集;D将问题转化为与直线的交点个数求参数a的范围.【详解】由题设,当时有,则;当时有,则,故是奇函数,A正确因为在定义域上单调递减,所以,得a≤-4或a≥-1,B正确当a≥-1时,在定义域上单调递减,由,得:x>-1且x≠0,C正确的零点个数即为与直线的交点个数,由题意得,解得-3<a<-5+172,D错误故选:D7、D【解析】由已知可得,结合,得到(),再由是的一个单调区间,可得T,即,进一步得到,然后对逐一取值,分类求解得答案【详解】由题意,得,∴,又,∴()∵是一个单调区间,∴T,即,∵,∴,即①当,即时,,,∴,,∵,∴,此时在上不单调,∴不符合题意;②当,即时,,,∴,,∵,∴,此时在上不单调,∴不符合题意;③当,即时,,,∴,∵,∴,此时在上单调递增,∴符合题意,故选D【点睛】本题主要考查正弦型函数的单调性,对周期的影响,零点与对称轴之间的距离与周期的关系,考查分类讨论的数学思想方法,考查逻辑思维能力与推理运算能力,结合选项逐步对系数进行讨论是解决该题的关键,属于中档题.8、D【解析】对A,B,C,利用特殊值即可判断,对D,利用不等式的性质即可判断.【详解】解:对A,令,,此时满足,但,故A错;对B,令,,此时满足,但,故B错;对C,若,,则,故C错;对D,,则,故D正确.故选:D.9、B【解析】根据的函数图象结合特殊角的三角函数值,即可容易求得结果.【详解】根据的图象可知:当时,或,数形结合可知:当,得故选:.【点睛】本题考查利用三角函数的图象解不等式,属简单题.10、D【解析】分别化简每个选项的解析式并求出定义域,再判断是否与相等.【详解】A选项:解析式为,定义域为R,解析式不相同;B选项:解析式为,定义域为,定义域不相同;C选项:解析式为,定义域为,定义域不相同;D选项:解析式为,定义域为R,符合条件,答案为D.【点睛】函数相等主要看:(1)解析式相同;(2)定义域相同.属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】将目标式转化为,应用柯西不等式求取值范围,进而可得目标式的最小值,注意等号成立条件.【详解】由题设,,则,又,∴,当且仅当时等号成立,∴,当且仅当时等号成立.∴的最小值为.故答案为:.12、(答案不止一个)【解析】根据偶函数和零点的定义进行求解即可.详解】函数符合题目要求,理由如下:该函数显然满足①;当时,,所以有,当时,,所以有,因此该函数是偶函数,所以满足②当时,,或,当时,,或舍去,所以该函数有3个零点,满足③,故答案为:13、【解析】依题意可得恒成立,则,得到一元二次不等式,解得即可;【详解】解:依题意可得,命题等价于恒成立,故只需要解得,即故答案为:14、②③【解析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.15、【解析】由题设,易知圆柱体轴截面的对角线长为2,进而求底面直径,再由圆柱体体积公式求体积即可.【详解】由题意知:圆柱体轴截面的对角线长为2,而其高为1,∴圆柱底面直径为.∴该圆柱的体积为.故答案为:16、①②④【解析】根据点的坐标的意义结合图形逐个分析判断即可【详解】对于①,由题意可知,A1的横、纵坐标分别为第1名艺人上午创作的甲作品数和乙作品数,由图可知A1的横坐标小于纵坐标,所以该天上午第对于②,由题意可知,B1的纵坐标为第1名艺人下午创作的乙作品数,B2的纵坐标为第2名艺人下午创作的乙作品数,由图可知B1的纵坐标小于B2的纵坐标,所以该天下午第对于③,④,由图可知,A1,B1的横、纵坐标之和大于A2故答案为:①②④三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】(1)连接,交于点,连接,根据三角形中位线得到,进而得到线面平行;(2)根据二面角的定义可证得是二面角的平面角,在三角形BD中求解即可解析:(1)连接,交于点,连接.因为是三棱柱,所有四边形为平行四边形.所以是中点.因为点是的中点,所以是的中位线,所以,又平面,平面,所以平面.(2)是二面角的平面角.事实上,因为面,面,所以.在中,,是底边的中点,所以.因为,,,所以平面,因为平面,平面,所以,,所以是二面角的平面角.在直角三角形中,,,所以为等腰直角三角形,所以.18、(1)(2)【解析】(1)利用两角和与差的正弦函数、二倍角公式化简,将化为只含有一个三角函数的形式,然后利用三角函数性质求解;(2)将在恰有10个零点变为在在恰有10个解的问题,列出相应不等式即可求解.【小问1详解】,由,得,可知函数的值域为,【小问2详解】令,即,所以函数在恰有10个零点,即在在恰有10个解,设的最小正周期为,则,解得,即最小正周期的取值范围时.19、(1)(2)【解析】(1)结合指数运算求得正确答案.(2)结合对数运算求得正确答案.【小问1详解】原式【小问2详解】原式20、(1)对称中心为,单调递减区间为(2)【解析】(1)由倍角公式以及辅助角公式化简函数,然后由正弦函数的对称中心以及单调递减区间求出函数的对称中心和单调递减区间;(2)由函数的图像向右平移个单位得到函数的解析式,再由,得到,求出函数在区
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 提前施工委托书
- 2025年天津b2考货运资格证要多久
- 《型翻转床推广方案》课件
- 2025年山西货运从业资格证考试模拟题库答案大全
- 2025年牡丹江货运上岗证考试题库答案
- 2025年安顺货运从业资格证考题
- 2025年安阳a2驾驶证货运从业资格证模拟考试
- 仿古住宅小区开发协议
- 制造业工伤理赔调解协议
- 公路建设项目招投标难点分析
- 如何制作一个简易的动物细胞模型
- 2024年便携式X光机行业分析报告及未来发展趋势
- 腾讯公司营销策略
- 网络安全与信息保密培训
- 2024年国家电投招聘笔试参考题库含答案解析
- 牛津译林版英语七年级上册期末复习之作文
- 读蔬项目定位方案
- 保安企业承接大型活动安保任务资质评定与管理规范
- 金属挤压共(有色挤压工)中级复习资料练习试题附答案
- 投标报价得分计算表Excele
- 医院放射科辐射评估报告
评论
0/150
提交评论