版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市宝山区2025届高二数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列对动直线的四种表述不正确的是()A.与曲线C:可能相离,相切,相交B.恒过定点C.时,直线斜率是0D.时,直线的倾斜角是135°2.下列命题中的假命题是()A.,B.存在四边相等的四边形不是正方形C.“存在实数,使”的否定是“不存在实数,使”D.若且,则,至少有一个大于3.已知数列为等差数列,则下列数列一定为等比数列的是()A. B.C. D.4.已知椭圆(a>b>0)的离心率为,则=()A. B.C. D.5.椭圆焦距为()A. B.8C.4 D.6.已知奇函数是定义在R上的可导函数,的导函数为,当时,有,则不等式的解集为()A. B.C. D.7.已知直线的方程为,则该直线的倾斜角为()A. B.C. D.8.不等式的解集为()A.或 B.C. D.9.定义“等方差数列”:如果一个数列从第二项起,每一项的平方与它的前一项的平方的差都等于同一个常数,那么这个数列就叫作等方差数列,这个常数叫作该数列的方公差.设是由正数组成的等方差数列,且方公差为4,,则数列的前24项和为()A. B.3C. D.610.数列,,,,,中,有序实数对是()A. B.C. D.11.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.12.已知曲线,则“”是“C为双曲线”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.若函数在区间内存在最大值,则实数的取值范围是____________.14.已知椭圆的右顶点为,直线与椭圆交于两点,若,则椭圆的离心率为___________.15.若点为圆的弦的中点,则弦所在直线方程为________.16.已知点为抛物线的焦点,,点为抛物线上一动点,当最小时,点恰好在以为焦点的双曲线上,则该双曲线的离心率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的长轴长是短轴长的倍,且经过点.(1)求的标准方程;(2)的右顶点为,过右焦点的直线与交于不同的两点,,求面积的最大值.18.(12分)一个盒中装有编号分别为、、、的四个形状大小完全相同的小球.(1)从盒中任取两球,列出所有的基本事件,并求取出的球的编号之和大于的概率;(2)从盒中任取一球,记下该球的编号,将球放回,再从盒中任取一球,记下该球的编号,列出所有的基本事件,并求的概率.19.(12分)在数列中,,,记.(1)求证:数列为等差数列,并求出数列的通项公式;(2)试判断数列的增减性,并说明理由20.(12分)如图,已知平行六面体中,底面ABCD是边长为1的正方形,,,设,,(1)用,,表示,并求;(2)求21.(12分)已知函数.若函数有两个极值点,求实数的取值范围.22.(10分)在中,内角所对的边长分别为,是1和的等差中项(1)求角;(2)若的平分线交于点,且,求的面积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据过定点的直线系求出恒过点可判断B,由点与圆的位置关系可判断A,由直线方程可判断CD.【详解】直线可化为,令,,解得,,所以直线恒过定点,而该定点在圆C:内部,所以必与该圆相交当时,直线方程为,故斜率为0,当时,直线方程为,故斜率为,倾斜角为135°.故选:A2、C【解析】利用简易逻辑的知识逐一判断即可.【详解】,故A正确;菱形的四边相等,但不一定是正方形,故B正确;“存在实数,使”的否定是“对任意的实数都有”,故C错误;假设且,则,与矛盾,故D正确;故选:C3、A【解析】根据等比数列的定义判断【详解】设的公差是,即,显然,且是常数,是等比数列,若中一个为1,则,则不是等比数列,只要,,都不可能是等比数列,如,,故选:A4、D【解析】由离心率得,再由转化为【详解】因为,所以8a2=9b2,所以故选:D.5、A【解析】由题意椭圆的焦点在轴上,故,求解即可【详解】由题意,,故椭圆的焦点在轴上故焦距故选:A6、B【解析】根据给定的不等式构造函数,再探讨函数的性质,借助性质解不等式作答.【详解】依题意,令,因是R上的奇函数,则,即是R上的奇函数,当时,,则有在单调递增,又函数在R上连续,因此,函数在R上单调递增,不等式,于是得,解得,所以原不等式的解集是.故选:B7、D【解析】设直线倾斜角为,则,即可求出.【详解】设直线的倾斜角为,则,又因为,所以.故选:D.8、A【解析】根据一元二次不等式的解法可得答案.【详解】由不等式可得或不等式的解集为或故选:A9、C【解析】根据等方差数列的定义,结合等差数列的通项公式,运用裂项相消法进行求解即可.【详解】因为是方公差为4的等方差数列,所以,,∴,∴,∴,故选:C10、A【解析】根据数列的概念,找到其中的规律即可求解.【详解】由数列,,,,,可知,,,,,则,解得,故有序实数对是,故选:11、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.12、A【解析】根据充分必要条件的定义,以及双曲线的标准方程进行判断可得选项【详解】解:当时,表示双曲线,当表示双曲线时,则,所以“”是“C为双曲线”的充分不必要条件.故选A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先利用导数判断函数的单调性,再根据函数在开区间内存在最大值,可判断极大值点就是最大值点,列式求解.【详解】由题可知:所以函数在单调递减,在单调递增,故函数的极大值为.所以在开区间内的最大值一定是又,所以得实数的取值范围是故答案为:【点睛】关键点点睛:由函数在开区间内若存在最大值,即极大值点在区间内,同时还得满足极大值点是最大值,还需列不等式,不要忽略这个不等式.14、【解析】求出右顶点坐标,然后推出的纵坐标,利用已知条件列出方程,求解椭圆的离心率即可【详解】解:椭圆的右顶点为,直线与椭圆交于,两点,若,可知,不妨设在第一象限,所以的纵坐标为:,可得:,即,可得,,所以故答案为:15、【解析】因为为圆的弦的中点,所以圆心坐标为,,所在直线方程为,化简为,故答案为.考点:1、两直线垂直斜率的关系;2、点斜式求直线方程.16、【解析】设点,根据抛物线的定义表示出,将用表示,并逐步转化为一个基本不等式形式,从而求出取最小值时的点的坐标,再根据双曲线的定义及离心率的公式求值.【详解】由题意可得,,,抛物线的准线为,设点,根据对称性,不妨设,由抛物线的定义可知,又,所以,当且仅当时,等号成立,此时,设以为焦点的双曲线方程为,则,即,又,,所以离心率.故答案为:.【点睛】关键点点睛:本题的关键是将的坐标表达式逐渐转化为一个可以用基本不等式求最值的式子,从而找出取最小值时的点的坐标.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)利用已知条件,结合椭圆方程求出,即可得到椭圆方程(2)设出直线方程,联立椭圆与直线方程,利用韦达定理,弦长公式,列出三角形的面积,再利用基本不等式转化求解即可【详解】(1)解:由题意解得,,所以椭圆的标准方程为(2)点,右焦点,由题意知直线的斜率不为0,故设的方程为,,,联立方程得消去,整理得,∴,,,,当且仅当时等号成立,此时:,所以面积的最大值为【点睛】本题考查椭圆的性质和方程的求法,考查联立直线方程和椭圆方程消去未知数,运用韦达定理化简整理和运算能力,属于中档题18、(1)基本事件答案见解析,概率为;(2)基本事件答案见解析,概率为.【解析】(1)利用列举法列举出所有的基本事件,并确定事件“取出的球的编号之和大于”所包含的基本事件数,利用古典概型的概率公式可求得结果;(2)利用列举法列举出所有的基本事件,并确定事件“”所包含的基本事件数,利用古典概型的概率公式可求得结果.【详解】(1)记“从盒中任取两球,取出球的编号之和大于”为事件,样本点表示“从盒中取出、号球”,且和表示相同的样本点(以此类推),则样本空间为,则,根据古典概型可知,从盒中任取两球,取出球的编号之和大于的概率为;(2)记“”为事件,样本点表示第一次取出号球,将球放回,从盒中取出号球(以此类推),则样本空间,则,所以,故事件“”的概率为.19、(1)证明见解析,(2)数列单调递减.【解析】(1)根据等差数列的定义即可证明数列为等差数列,然后套用等差数列的通项公式即可;(2)先根据(1)的结论求出数列的通项,然后用作差法即可判断其单调性【小问1详解】因为,,所以,所以,,所以数列是以1为首项,为公差的等差数列,【小问2详解】由(1)可知,,所以,所以,故,所以数列单调递减.20、(1),(2)0【解析】(1)把,,作为基底,利用空间向量基本定理表示,然后根据已知的数据求,(2)先把用基底表示,然后化简求解【小问1详解】因为,,,,所以,因为底面ABCD是边长为1的正方形,,,所以【小问2详解】因为,底面ABCD是边长为1的正方形,,,所以21、.【解析】求得,根据其在上有两个零点,结合零点存在性定理,对参数进行分类讨论,即可求得参数的取值范围.【详解】因为,所以,令,由题意可知在上有两个不同零点.又,若,则,故在上为增函数,这与在上有两个不同零点矛盾,故.当时,,为增函数,当时,,为减函数,故,因为在上有两个不同零点,故,即,即,取,,故在有一个零点,取,,令,,则,故在为减函数,因为,故,故,故在有一个零点,故在上有两个零点,故实数的取值范围为.【点睛】本题考察利用导数由函数的极值点个数求参数的范围,涉及零点存在定理,以及利用导数研究函数单调性,属综合困难题.22、(1);(2)【解析】(1)根据是1和的等差中项得到,再利用正弦定理结合商数关系,两角和与差的三角函数化简
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 提前施工委托书
- 2025年天津b2考货运资格证要多久
- 《型翻转床推广方案》课件
- 2025年山西货运从业资格证考试模拟题库答案大全
- 2025年牡丹江货运上岗证考试题库答案
- 2025年安顺货运从业资格证考题
- 2025年安阳a2驾驶证货运从业资格证模拟考试
- 仿古住宅小区开发协议
- 制造业工伤理赔调解协议
- 公路建设项目招投标难点分析
- “僵尸型”社会组织注销登记表
- 住院HIS系统流程图
- 采购部年终总结计划PPT模板
- 智能交互式无纸化会议系统设计方案
- 机械制造工艺学课程设计
- 配电箱安装施工方案
- 湘少版英语四年级上册Unit12Petercanjumphigh单元测试题(含答案及)
- 早产儿知情同意书
- 手术质量与安全监测分析制度
- 2020年事业单位招聘考试《气象专业基础知识》真题库及答案1000题
- 模型构建的原则和主要步骤
评论
0/150
提交评论