2025届云南省双江县第一中学高一数学第一学期期末经典试题含解析_第1页
2025届云南省双江县第一中学高一数学第一学期期末经典试题含解析_第2页
2025届云南省双江县第一中学高一数学第一学期期末经典试题含解析_第3页
2025届云南省双江县第一中学高一数学第一学期期末经典试题含解析_第4页
2025届云南省双江县第一中学高一数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届云南省双江县第一中学高一数学第一学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积S可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦----秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为()A.6 B.9C.12 D.182.给定函数:①;②;③;④,其中在区间上单调递减函数序号是()A.①② B.②③C.③④ D.①④3.在①;②;③;④上述四个关系中,错误的个数是()A.1个 B.2个C.3个 D.4个4.设,,,则的大小关系是()A. B.C. D.5.函数的部分图象大致为()A B.C. D.6.已知函数若函数有四个零点,零点从小到大依次为则的值为()A.2 B.C. D.7.设,,,则a,b,c的大小关系是()A. B.C. D.8.已知命题:角为第二或第三象限角,命题:,命题是命题的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件9.已知,,三点,点使直线,且,则点D的坐标是(

)A. B.C. D.10.已知,均为正实数,且,则的最小值为A.20 B.24C.28 D.32二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的值为______12.已知在上单调递增,则的范围是_____13.以A(1,1),B(3,2),C(5,4)为顶点的△ABC,其边AB上的高所在的直线方程是________.14.已知函数,的图像在区间上恰有三个最低点,则的取值范围为________15.已知函数(,,)的部分图象如图,则函数的单调递增区间为______.16.计算:__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线l与x轴和y轴的正半轴分别交于A,B两点,O为坐标原点,且△AOB的面积为6(Ⅰ)若直线l过点(3,1),求原点O关于直线l对称点的坐标;(Ⅱ)是否存在直线l同时满足点(1,1)到直线l的距离为1,若存在,求出直线l的方程;若不存在,请说明理由18.已知全集,若集合,.(1)若,求;(2)若,求实数的取值范围.19.如图,在正方体中,为棱、的三等分点(靠近A点).求证:(1)平面;(2)求证:平面平面.20.已知全集为实数集R,集合,求,;已知集合,若,求实数a的取值范围21.(1)若是的根,求的值(2)若,,且,,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据题意可得,代入面积公式,配方即可求出最大值.【详解】由,,则,所以,当时,取得最大值,此时.故选:C2、B【解析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解.【详解】①,为幂函数,且的指数,在上为增函数,故①不可选;②,,为对数型函数,且底数,在上为减函数,故②可选;③,在上为减函数,在上为增函数,故③可选;④为指数型函数,底数在上为增函数,故④不可选;综上所述,可选的序号为②③,故选B.【点睛】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题.3、B【解析】根据元素与集合的关系,集合与集合的关系以及表示符号,及规定空集是任何非空集合的真子集,即可找出错误的个数【详解】解:“”表示集合与集合间的关系,所以①错误;集合中元素是数,不是集合元素,所以②错误;根据子集的定义,{0,1,2}是自身的子集,空集是任何非空集合的真子集,所以③④正确;所表示的关系中,错误的个数是2故选:B4、C【解析】根据对数函数和幂函数单调性可比较出大小关系.【详解】,;,,,即,又,.故选:C.5、C【解析】根据题意,分析可得函数为奇函数,当时,有,利用排除法分析可得答案.详解】解:根据题意,对于函数,有函数,即函数为奇函数,图象关于原点对称,故排除A、B;当时,,则恒有,排除D;故选:C.6、C【解析】函数有四个零点,即与图象有4个不同交点,可设四个交点横坐标满足,由图象,结合对数函数的性质,进一步求得,利用对称性得到,从而可得结果.【详解】作出函数的图象如图,函数有四个零点,即与的图象有4个不同交点,不妨设四个交点横坐标满足,则,,,可得,由,得,则,可得,即,,故选C.【点睛】函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.7、C【解析】利用指数函数和对数函数的性质确定a,b,c的范围,由此比较它们的大小.【详解】∵函数在上为减函数,,∴,即,∵函数在上为减函数,,∴,即,函数在上为减函数,,即∴.故选:C.8、D【解析】利用切化弦判断充分性,根据第四象限的角判断必要性.【详解】当角为第二象限角时,,所以,当角为第三象限角时,,所以,所以命题是命题的不充分条件.当时,显然,当角可以为第四象限角,命题是命题的不必要条件.所以命题是命题的既不充分也不必要条件.故选:D9、D【解析】先设点D的坐标,由题中条件,且,建立D点横纵坐标的方程,解方程即可求出结果.【详解】设点,则由题意可得:,解得,所以D点坐标为.【点睛】本题主要考查平面向量,属于基础题型.10、A【解析】分析:由已知条件构造基本不等式模型即可得出.详解:均为正实数,且,则当且仅当时取等号.的最小值为20.故选A.点睛:本题考查了基本不等式性质,“一正、二定、三相等”.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】根据给定条件把正余弦的齐次式化成正切,再代入计算作答.【详解】因,则,所以的值为2.故答案为:212、【解析】令,利用复合函数的单调性分论讨论函数的单调性,列出关于的不等式组,求解即可.【详解】令当时,由题意知在上单调递增且对任意的恒成立,则,无解;当时,由题意知在上单调递减且对任意的恒成立,则,解得.故答案为:【点睛】本题考查对数型复合函数的单调性,同增异减,求解时注意对数函数的定义域,属于基础题.13、2x+y-14=0【解析】求出直线AB的斜率,即可得出高的斜率,由点斜式即可求出.【详解】由A,B两点得,则边AB上的高所在直线的斜率为-2,故所求直线方程是y-4=-2(x-5),即2x+y-14=0.故答案为:2x+y-14=0.14、【解析】直接利用正弦型函数的性质的应用和函数的单调递区间的应用求出结果【详解】解:,,根据正弦型函数图象的特点知,轴左侧有1个或2个最低点①若函数图象在轴左侧仅有1个最低点,则,解得,,,此时在轴左侧至少有2个最低点函数图象在轴左侧仅有1个最低点不符合题意;②若函数图象在轴左侧有2个最低点,则,解得,又,则,故,时,在,恰有3个最低点综上所述,故答案:15、【解析】由函数的图象得到函数的周期,同时根据图象的性质求得一个单调增区间,然后利用周期性即可写出所有的增区间.【详解】由图可知函数f(x)的最小正周期.如图所示,一个周期内的最低点和最高点分别记作,分别作在轴上的射影,记作,根据的对称性可得的横坐标分别为,∴是函数f(x)的一个单调增区间,∴函数的单调增区间是,故答案为:,【点睛】本题关键在于掌握函数图象的对称性和周期性.一般往往先从函数的图象确定函数中的各个参数的值,再利用函数的解析式和正弦函数的性质求得单调区间,但是直接由图象得到函数的周期,并根据函数的图象的性质求得一个单调增区间,进而写出所有的增区间,更为简洁.16、【解析】.故答案为.点睛:(1)任何非零实数的零次幂等于1;(2)当,则;(3).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I)(,)(Ⅱ)直线l的方程为4x+3y-12=0,或3x+4y-12=0【解析】(I)设A(a,0),B(0,b),则ab=6,即ab=12,(a,b>0).直线l的方程为:,直线l过点(3,1),代入可得.与ab=12联立解得:a,b.即可得出直线l的方程.设原点O关于直线l对称点的坐标为(m,n),利用中点坐标公式、相互垂直的直线斜率之间的关系即可得出(Ⅱ)假设存在直线l同时满足点(1,1)到直线l的距离为1,可得,与ab=12联立解得a,b即可得出【详解】(I)设A(a,0),B(0,b),则ab=6,即ab=12,(a,b>0)直线l的方程为:=1,∵直线l过点(3,1),∴=1与ab=12联立解得:a=6,b=2∴直线l的方程为:=1化为:x+3y-6=0设原点O关于直线l对称点坐标为(m,n),则×=-1,-6=0,化为:m+3n-12=0联立解得m=,n=∴原点O关于直线l对称点的坐标为(,)(Ⅱ)假设存在直线l同时满足点(1,1)到直线l的距离为1,则=1,与ab=12联立解得:,或可得:直线l的方程,4x+3y-12=0,或3x+4y-12=0【点睛】本题考查了中点坐标公式、相互垂直的直线斜率之间的关系、点到直线的距离公式、截距式,考查了推理能力与计算能力,属于中档题18、(1)(2)【解析】(1)利用集合的交集及补集的定义直接求解即可;(2)由可得,利用集合的包含关系求解即可.【详解】(1)当时,,所以,因为,所以;(2)由得,,所以【点睛】本题主要考查了集合的运算及包含关系求参,属于基础题.19、(1)见解析;(2)见解析.【解析】(1)欲证:平面,根据直线与平面平行的判定定理可知,只需证与平面内一条直线平行,连接,可知,则,又平面,平面,满足定理所需条件;(2)欲证:平面平面,根据面面垂直的判定定理可知,在平面内一条直线与平面垂直,而平面,平面,则,,满足线面垂直的判定定理则平面,而平面,满足定理所需条件【详解】(1)证明:连接,在正方体中,对角线,又因为、为棱、的三等分点,所以,则,又平面,平面,所以平面(2)因为在正方体中,因为平面,而平面,所以,又因为在正方形中,,而,平面,平面,所以平面,又因为平面,所以平面平面【点睛】本题主要考查线面平行的判定定理和线面垂直的判定定理,以及考查对基础知识的综合应用能力和基本定理的掌握能力20、(1);(2).【解析】(1)借助题设条件求集合,再求其交集

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论