山东省淄博市淄川中学2025届高一上数学期末质量跟踪监视模拟试题含解析_第1页
山东省淄博市淄川中学2025届高一上数学期末质量跟踪监视模拟试题含解析_第2页
山东省淄博市淄川中学2025届高一上数学期末质量跟踪监视模拟试题含解析_第3页
山东省淄博市淄川中学2025届高一上数学期末质量跟踪监视模拟试题含解析_第4页
山东省淄博市淄川中学2025届高一上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省淄博市淄川中学2025届高一上数学期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的最大值为()A. B.C. D.2.设集合,则集合的元素个数为()A.0 B.1C.2 D.33.函数f(x)=+的定义域为()A. B.C. D.4.已知不等式的解集为,则不等式的解集是()A. B.C.或 D.或5.计算:()A.0 B.1C.2 D.36.若函数的定义域是,则函数值域为()A. B.C. D.7.已知幂函数y=f(x)经过点(3,),则f(x)()A.是偶函数,且在(0,+∞)上是增函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是减函数D.是非奇非偶函数,且在(0,+∞)上是增函数8.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若,则C.若,则 D.若,则9.下列函数中,在R上为增函数的是()A.y=2-xC.y=2x10.已知函数对于任意两个不相等实数,都有成立,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A. B.C. D.-112.已知函数,若,则________.13.过正方体的顶点作直线,使与棱、、所成的角都相等,这样的直线可以作_________条.14.设,向量,,若,则_______15.函数在上的最小值是__________16.已知实数x、y满足,则的最小值为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知实数,且满足不等式.(1)解不等式;(2)若函数在区间上有最小值,求实数的值.18.已知.(1)求函数的单调递减区间;(2)求函数的最值并写出取最值时自变量的值;(3)若函数为偶函数,求的值.19.已知是上的奇函数,且(1)求的解析式;(2)判断的单调性,并根据定义证明20.已知函数是R上的奇函数.(1)求a的值,并判断的单调性;(2)若存在,使不等式成立,求实数b的取值范围.21.如图,正方体中,点,分别为棱,的中点.(1)证明:平面;(2)证明:平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先利用辅助角公式化简,再由正弦函数的性质即可求解.【详解】,所以当时,取得最大值,故选:C2、B【解析】解出集合中的不等式,得到集合中的元素,利用交集的运算即可得到结果.【详解】集合,所以.故选:B.3、C【解析】根据分母部位0,被开方数大于等于0构造不等式组,即可解出结果【详解】利用定义域的定义可得,解得,即,故选C【点睛】本题考查定义域的求解,需掌握:分式分母不为0,②偶次根式被开方数大于等于0,③对数的真数大于0.4、A【解析】由不等式的解集为,可得的根为,由韦达定理可得的值,代入不等式解出其解集即可.【详解】的解集为,则的根为,即,,解得,则不等式可化为,即为,解得或,故选:A.5、B【解析】根据指数对数恒等式及对数的运算法则计算可得;【详解】解:;故选:B6、A【解析】根据的单调性求得正确答案.【详解】根据复合函数单调性同增异减可知在上递增,,即.故选:A7、D【解析】利用幂函数的定义求得指数的值,得到幂函数的解析式,进而结合幂函数的图象判定单调性和奇偶性【详解】设幂函数的解析式为,将点的坐标代入解析式得,解得,∴,函数的定义域为,是非奇非偶函数,且在上是增函数,故选:D.8、C【解析】对于A、B、D均可能出现,而对于C是正确的9、C【解析】对于A,y=2-x=12x,在R上是减函数;对于B,y=x2在-∞,0上是减函数,在0,+∞上是增函数;对于C,当【详解】解:对于A,y=2-x=12对于B,y=x2在-∞,0对于C,当x≥0时,y=2x是增函数,当x<0时,y=x是增函数,所以函数fx对于D,y=lgx的定义域是0,+∞故选:C.10、B【解析】由题可得函数为减函数,根据单调性可求解参数的范围.【详解】由题可得,函数为单调递减函数,当时,若单减,则对称轴,得:,当时,若单减,则,在分界点处,应满足,即,综上:故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、D【解析】设平均增长率为x,由题得故填.12、【解析】根据题意,将分段函数分类讨论计算可得答案【详解】解:当时,,即,解得,满足题意;当时,,即,解得,不满足题意故.故答案为.【点睛】本题考查分段函数的计算,属于基础题13、【解析】将小正方体扩展成4个小正方体,根据直线夹角的定义即可判断出符合条件的条数【详解】解:设ABCD﹣A1B1C1D1边长为1第一条:AC1是满足条件的直线;第二条:延长C1D1到C1且D1C2=1,AC2是满足条件的直线;第三条:延长C1B1到C3且B1C3=1,AC3是满足条件的直线;第四条:延长C1A1到C4且C4A1,AC4是满足条件的直线故答案为4【点睛】本题考查满足条件的直线条数的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,考查分类与整合思想,是基础题14、【解析】根据向量共线的坐标表示,得到,再由二倍角的正弦公式化简整理,即可得出结果.【详解】∵,向量,,∴,∴,∵,∴故答案为:.【点睛】本题主要考查由向量共线求参数,涉及二倍角的正弦公式,熟记向量共线的坐标表示即可,属于常考题型.15、【解析】在上单调递增最小值为16、【解析】利用基本不等式可得,即求.【详解】依题意,当且仅当,即时等号成立.所以的最小值为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】分析:(1)由题意结合指数函数的单调性可得,结合函数的单调性和函数的定义域可得不等式的解集为.(2),令,结合反比例函数性质和对数函数的性质可得.详解:(1)由题意得:,∴,∴,解得.(2),令,当时,,,所以,所以.∵,∴的对数函数在定义域内递减,∴,∴.点睛:本题主要考查指数函数的性质,对数函数的性质,换元法及其应用等知识,意在考查学生的转化能力和计算求解能力.18、(1);(2)当时,;当时,;(3).【解析】(1)利用二倍角公式、辅助角公式化简函数,再利用正弦函数的单调性求解作答.(2)利用(1)中函数,借助正弦函数的最值计算作答.(3)求出,再利用三角函数的奇偶性推理计算作答.【小问1详解】依题意,,由得:,所以函数的单调递减区间是.【小问2详解】由(1)知,当,即时,,当,即时,,所以,当时,,当时,.【小问3详解】由(1)知,,因函数为偶函数,于是得,化简整理得,而,则,所以的值是.19、(1)(2)见解析【解析】(1)由可得解;(2)利用单调性的定义证明即可.【小问1详解】已知是上的奇函数,且,所以,解得,所以,小问2详解】根据指数函数的单调性可判断得为增函数.下证明:设是上任意给定的两个实数,且,则,,,,函数在上是单调递增函数20、(1),为上的增函数;(2).【解析】(1)由奇函数的定义即可求解的值,因为,所以由复合函数单调性的判断法则即可判断的单调性;(2)由题意,原问题等价于,令,则,利用二次函数的性质可求得的最小值,从而即可得答案.【小问1详解】解:∵函数是R上的奇函数,∴,即对任意恒成立,∴,∵,又在上单调递增且,且在单调递增,所以为上的增函数;【小问2详解】解:由已知在内

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论