2025届山东省德州市武城二中数学高二上期末综合测试试题含解析_第1页
2025届山东省德州市武城二中数学高二上期末综合测试试题含解析_第2页
2025届山东省德州市武城二中数学高二上期末综合测试试题含解析_第3页
2025届山东省德州市武城二中数学高二上期末综合测试试题含解析_第4页
2025届山东省德州市武城二中数学高二上期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省德州市武城二中数学高二上期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线的斜率是()A. B.C. D.2.如图所示,正方形边长为2cm,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.16cm B.cmC.8cm D.cm3.不等式的解集为()A. B.C. D.4.已知1与5的等差中项是,又1,,,8成等比数列,公比为,则的值为()A.5 B.4C.3 D.65.下列语句中是命题的是A.周期函数的和是周期函数吗? B.C. D.梯形是不是平面图形呢?6.设等比数列的前项和为,若,则()A. B.C. D.7.若方程表示双曲线,则()A. B.C. D.8.已知等比数列的公比为q,且,则“”是“是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.如图,在长方体中,是线段上一点,且,若,则()A. B.C. D.10.如图,样本和分别取自两个不同的总体,它们的平均数分别为和,标准差分别为和,则()AB.C.D.11.已知等差数列的公差,若,,则该数列的前项和的最大值为()A.30 B.35C.40 D.4512.2021年小林大学毕业后,9月1日开始工作,他决定给自己开一张储蓄银行卡,每月的10号存钱至该银行卡(假设当天存钱次日到账).2021年9月10日他给卡上存入1元,以后每月存的钱数比上个月多一倍,则他这张银行卡账上存钱总额(不含银行利息)首次达到1万元的时间为()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日二、填空题:本题共4小题,每小题5分,共20分。13.若,是双曲线与椭圆的共同焦点,点P是两曲线的一个交点,且为等腰三角形,则该双曲线的渐近线为______14.已知是首项为,公差为1的等差数列,数列满足,若对任意的,都有成立,则实数的取值范围是________15.根据如下样本数据34567402.5-0.50.5-2得到的回归方程为若,则的值为___________.16.已知为曲线:上一点,,,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)记为等差数列的前n项和,已知.(1)求的通项公式;(2)求的最小值.18.(12分)已知函数.(1)当时,讨论的单调性;(2)当时,证明:.19.(12分)如图,在四棱锥中,平面,底面是直角梯形,,,,,为侧棱包含端点上的动点.(1)当时,求证平面;(2)当直线与平面所成角的正弦值为时,求二面角的余弦值.20.(12分)已知椭圆的左、右焦点分别为,离心率为,圆:过椭圆的三个顶点,过点的直线(斜率存在且不为0)与椭圆交于两点(1)求椭圆的标准方程(2)证明:在轴上存在定点,使得为定值,并求出定点的坐标21.(12分)设命题,,命题,.若p、q都为真命题,求实数m的取值范围.22.(10分)各项都为正数的数列的前项和为,且满足.(1)求数列的通项公式;(2)求;(3)设,数列的前项和为,求使成立的的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】把直线方程化为斜截式即得【详解】直线方程的斜截式为,斜率为故选:D2、A【解析】由直观图确定原图形中平行四边形中线段的长度与关系,然后计算可得【详解】由斜二测画法,原图形是平行四边形,,又,,,所以,周长为故选:A3、A【解析】根据一元二次不等式的解法进行求解即可.【详解】,故选:A.4、A【解析】由等差中项的概念列式求得值,再由等比数列的通项公式列式求解,则答案可求.【详解】由题意,,则;又1,,,8成等比数列,公比为,,即,,故选:.5、B【解析】命题是能判断真假的语句,疑问句不是命题,易知为命题,故选B6、C【解析】利用等比数列前项和的性质,,,,成等比数列求解.【详解】解:因为数列为等比数列,则,,成等比数列,设,则,则,故,所以,得到,所以.故选:C.7、C【解析】根据曲线方程表示双曲线方程有,即可求参数范围.【详解】由题设,,可得.故选:C.8、B【解析】利用充分条件和必要条件的定义结合等比数列的性质分析判断【详解】当时,则,则数列为递减数列,当是递增数列时,,因为,所以,则可得,所以“”是“是递增数列”的必要不充分条件,故选:B9、A【解析】将利用、、表示,再利用空间向量的加法可得出关于、、的表达式,进而可求得的值.【详解】连接、,因,因为是线段上一点,且,则,因此,因此,.故选:A.10、B【解析】直接根据图表得到答案.【详解】根据图表:样本数据均小于等于10,样本数据均大于等于10,故;样本数据波动大于样本数据,故.故选:B.11、D【解析】利用等差数列的性质求出公差以及首项,再由等差数列的前项和公式即可求解.【详解】等差数列,由,有,又,公差,所以,,得,,,∴当或10时,最大,,故选:D12、C【解析】分析可得每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为,分析首次达到1万元的值,即得解【详解】依题意可知,小林从第一个月开始,每月所存钱数依次成首项为1,公比为2的等比数列,其前n项和为.因为为增函数,且,所以第14个月的10号存完钱后,他这张银行卡账上存钱总额首次达到1万元,即2022年10月11日他这张银行卡账上存钱总额首次达到1万元.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据给定条件求出两曲线的共同焦点,再由椭圆、双曲线定义求出a,b即可计算作答.【详解】椭圆的焦点,由椭圆、双曲线的对称性不妨令点P在第一象限,因为等腰三角形,由椭圆的定义知:,则,,由双曲线定义知:,即,,,所以双曲线的渐近线为:.故答案为:【点睛】易错点睛:双曲线(a>0,b>0)渐近线方程为,而双曲线(a>0,b>0)的渐近线方程为(即),应注意其区别与联系.14、【解析】先求得,再得出,对于任意的,都有成立,说明是中的最小项【详解】由题意,∴,易知函数在和上都是减函数,且时,,即,时,,,由题意对于任意的,都有成立,则是最小项,∴,解得,故答案为:15、-1.4##【解析】分别求出的值,即得到样本中心点,根据样本中心点一定在回归直线上,可求得答案.【详解】,则得到样本中心点为,因为样本中心点一定在回归直线上,故,解得,故答案为:16、【解析】曲线是抛物线的右半部分,是抛物线的焦点,作出抛物线的准线,把转化为到准线的距离,则到准线的距离为所求距离和的最小值【详解】易知曲线是抛物线的右半部分,如图,因为抛物线的准线方程为,是抛物线的焦点,所以等于到直线的距离.过作该直线的垂线,垂足为,则的最小值为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设数列的公差为d,由,利用等差数列的前n项和公式求解;(2)利用等差数列的前n项和公式结合二次函数的性质求解.【小问1详解】解:设数列的公差为d,∵,∴,解得2,∴.【小问2详解】由(1)知2,∴,,,∴当时,取得最小值-16.18、(1)在上单调递减,在上单调递增(2)证明见解析【解析】(1)当时,利用求得的单调区间.(2)将问题转化为证明,利用导数求得的最小值大于零,从而证得不等式成立.【小问1详解】当时,,且,又与均在上单调递增,所以在上单调递增.当时,单调递减;当时,单调递增综上,在上单调递减,在上单调递增.【小问2详解】因为,所以,要证,只需证当时,即可.,易知在上单调递增,又,所以,且,即,当时,单调递减;当时,单调递增,,所以.【点睛】在证明不等式的过程中,直接证明困难时,可考虑证明和两个不等式成立,从而证得成立.19、(1)证明见解析;(2).【解析】(1)连接交于,连接,证得,从而证得平面;(2)过作于,以为原点,建立空间直角坐标系,设,求面的法向量,由直线与平面所成角的正弦值为,求得的值,再用向量法求出二面角的余弦值.【详解】解:(1)连接交于,连接,由题意,∵,∴,∴,又面,面,∴面.(2)过作于,则在中,,,,以为原点,建立如图所示的空间直角坐标系.设,则,,,,,,,,设向量为平面的一个法向量,则由,有,令,得;记直线与平面所成的角为,则,解得,此时;设向量为平面的一个法向量则由,有,令,得;∴二面角的余弦值为.【点睛】本题考查了线面平行的判定与证明,用向量法求线面角,二面角,还考查了学生的分析能力,空间想象能力,运算能力,属于中档题.20、(1);(2)见解析,定点【解析】(1)先判断圆经过椭圆的上、下顶点和右顶点,令圆方程中的,得,即.再由求即可.(2)设在轴上存在定点,使得为定值,根据题意,设直线的方程为,联立可得,再运算将韦达定理代入化简有与k无关即可.【详解】(1)由圆方程中的时,的两根不为相反数,故可设圆经过椭圆的上、下顶点和右顶点,令圆方程中的,得,即有又,解得∴椭圆的标准方程为(2)证明:设在轴上存在定点,使得为定值,由(1)可得,设直线的方程为,联立可得,设,则,,要使为定值,只需,解得∴在轴上存在定点,使得为定值,定点的坐标为【点睛】本题主要考查椭圆的几何性质和直线与椭圆的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.21、【解析】先求出命题为真时,的取值范围,再取交集可得答案.【详解】若命题,为真命题,则,解得;若命题,为真命题,则命题,为假命题,即方程无实数根,因此,,解得.又p、q都为真命题,所以实数m的取值范围是.【点睛】本题考查全称命题与特称命题的真假求参数值、一元二次函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.22、(1)(2)(3)【解析】(1)直接利用数列的递推关系式,结合等差数列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论