![内蒙古包头市北方重工集团三中2025届高一上数学期末学业质量监测模拟试题含解析_第1页](http://file4.renrendoc.com/view12/M03/3C/34/wKhkGWcNZ3eARKg4AAIlbj99OgE397.jpg)
![内蒙古包头市北方重工集团三中2025届高一上数学期末学业质量监测模拟试题含解析_第2页](http://file4.renrendoc.com/view12/M03/3C/34/wKhkGWcNZ3eARKg4AAIlbj99OgE3972.jpg)
![内蒙古包头市北方重工集团三中2025届高一上数学期末学业质量监测模拟试题含解析_第3页](http://file4.renrendoc.com/view12/M03/3C/34/wKhkGWcNZ3eARKg4AAIlbj99OgE3973.jpg)
![内蒙古包头市北方重工集团三中2025届高一上数学期末学业质量监测模拟试题含解析_第4页](http://file4.renrendoc.com/view12/M03/3C/34/wKhkGWcNZ3eARKg4AAIlbj99OgE3974.jpg)
![内蒙古包头市北方重工集团三中2025届高一上数学期末学业质量监测模拟试题含解析_第5页](http://file4.renrendoc.com/view12/M03/3C/34/wKhkGWcNZ3eARKg4AAIlbj99OgE3975.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古包头市北方重工集团三中2025届高一上数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数满足且的最小值为,则函数的单调递增区间为A. B.C. D.2.已知扇形的周长是6,圆心角为,则扇形的面积是()A.1 B.2C.3 D.43.设,则a,b,c的大小关系是A. B.C. D.4.半径为,圆心角为的弧长为()A. B.C. D.5.如果直线l,m与平面满足和,那么必有()A.且 B.且C.且 D.且6.总体由编号为01,02,...,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表的第1行第5列和第6列数字开始由左向右依次选取两个数字,则选出来的第5个个体的编号为()7961950784031379510320944316831718696254073892615789810641384975A.20 B.18C.17 D.167.已知函数,若不等式对任意实数x恒成立,则a的取值范围为()A. B.C. D.8.已知两个不重合的平面α,β和两条不同直线m,n,则下列说法正确的是A.若m⊥n,n⊥α,m⊂β,则α⊥βB.若α∥β,n⊥α,m⊥β,则m∥nC.若m⊥n,n⊂α,m⊂β,则α⊥βD.若α∥β,n⊂α,m∥β,则m∥n9.若,则的可能值为()A.0 B.0,1C.0,2 D.0,1,210.已知直二面角,点,,为垂足,,,为垂足.若,则到平面的距离等于A. B.C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.写出一个同时具有下列性质的函数___________.①是奇函数;②在上为单调递减函数;③.12.若,则___________13.计算______.14.用表示a,b中的较小者,则的最大值是____.15.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧的长度为,则该勒洛三角形的面积为___________.16.古希腊数学家欧几里得所著《几何原本》中的“几何代数法”,很多代数公理、定理都能够通过图形实现证明,并称之为“无字证明”.如图,O为线段中点,C为上异于O的一点,以为直径作半圆,过点C作的垂线,交半圆于D,连结,过点C作的垂线,垂足为E.设,则图中线段,线段,线段_______;由该图形可以得出的大小关系为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求方程在上的解;(2)求证:对任意的,方程都有解18.已知函数.(1)若,求的最大值;(2)若,求关于不等式的解集.19.某中学共有3000名学生,其中高一年级有1200名学生,为了解学生的睡眠情况,现用分层抽样的方法,在三个年级中抽取了200名学生,依据每名学生的睡眠时间(单位:小时),绘制出了如图所示的频率分布直方图.(1)求样本中高一年级学生的人数及图中a的值;(2)估计样本数据中位数(保留两位小数);(3)估计全校睡眠时间不低于7个小时的学生人数.20.如图,已知点,是以为底边的等腰三角形,点在直线:上(1)求边上的高所在直线的方程;(2)求的面积21.已知在第一象限,若,,,求:(1)边所在直线的方程;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】分析:首先根据诱导公式和辅助角公式化简函数解析式,之后应用题的条件求得函数的最小正周期,求得的值,从而求得函数解析式,之后利用整体思维,借助于正弦型函数的解题思路,求得函数的单调增区间.详解:,根据题中条件满足且的最小值为,所以有,所以,从而有,令,整理得,从而求得函数的单调递增区间为,故选D.点睛:该题考查的是有关三角函数的综合问题,涉及到的知识点有诱导公式、辅助角公式、函数的周期以及正弦型函数的单调区间的求法,在结题的过程中,需要对各个知识点要熟记,解题方法要明确.2、B【解析】设扇形的半径为r,弧长为l,先由周长求出半径和弧长,即可求出扇形的面积.【详解】设扇形的半径为r,弧长为l,因为圆心角为,所以.因为扇形的周长是6,所以,解得:.所以扇形的面积是.故选:B3、D【解析】运用对数函数、指数函数的单调性,利用中间值法进行比较即可.【详解】,因此可得.故选:D【点睛】本题考查了对数式、指数式之间的大小比较问题,考查了对数函数、指数函数的单调性,考查了中间值比较法,属于基础题.4、D【解析】利用弧长公式即可得出【详解】解:,弧长cm故选:D5、A【解析】根据题设线面关系,结合平面的基本性质判断线线、线面、面面的位置关系.【详解】由,则;由,则;由上条件,m与可能平行、相交,与有可能平行、相交.综上,A正确;B,C错误,m与有可能相交;D错误,与有可能相交故选:A6、D【解析】利用随机数表从给定位置开始依次取两个数字,根据与20的大小关系可得第5个个体的编号.【详解】从随机数表的第1行第5列和第6列数字开始由左向右依次选取两个数字,小于或等于20的5个编号分别为:07,03,13,20,16,故第5个个体编号为16.故选:D.【点睛】本题考查随机数表抽样,此类问题理解抽样规则是关键,本题属于容易题.7、C【解析】先分析出的奇偶性,再得出的单调性,由单调性结合奇偶性解不等式得到,再利用均值不等式可得答案.【详解】的定义域满足,由,所以在上恒成立.所以的定义域为则所以,即为奇函数.设,由上可知为奇函数.当时,,均为增函数,则在上为增函数.所以在上为增函数.又为奇函数,则在上为增函数,且所以在上为增函数.所以在上为增函数.由,即所以对任意实数x恒成立即,由当且仅当,即时得到等号.所以故选:C8、B【解析】由题意得,A中,若,则或,又,∴不成立,∴A是错误的;B.若,则,又,∴成立,∴B正确;C.当时,也满足若,∴C错误;D.若,则或为异面直线,∴D错误,故选B考点:空间线面平行垂直的判定与性质.【方法点晴】本题主要考查了空间线面位置关系的判定与证明,其中熟记空间线面位置中平行与垂直的判定定理与性质定理是解得此类问题的关键,着重考查了学生的空间想象能和推理能力,属于基础题,本题的解答中,可利用线面位置关系的判定定理和性质定理判定,也可利用举出反例的方式,判定命题的真假.9、C【解析】根据,分,,讨论求解.【详解】因为,当时,集合为,不成立;当时,集合为,成立;当时,则(舍去)或,当时,集合为故选:C10、C【解析】如图,在平面内过点作于点因为为直二面角,,所以,从而可得.又因为,所以面,故的长度就是点到平面的距离在中,因为,所以因为,所以.则在中,因为,所以.因为,所以,故选C二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不唯一,符合条件即可)【解析】根据三个性质结合图象可写出一个符合条件的函数解析式【详解】是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又在上为单调递减函数,同时,故可选,且为奇数,故答案为:12、【解析】只需对分子分母同时除以,将原式转化成关于的表达式,最后利用方程思想求出.再利用二倍角的正切公式,即可求得结论【详解】解:,即,故答案为:【点睛】本题考查同角三角函数的关系,考查二倍角的正切公式,正确运用公式是关键,属于基础题13、7【解析】根据对数与指数的运算性质计算即可得解.【详解】解:.故答案为:7.14、【解析】分别做出和的图象,数形结合即可求解.【详解】解:分别做出和的图象,如图所示:又,当时,解得:,故当时,.故答案为:.15、【解析】计算出等边的边长,计算出由弧与所围成的弓形的面积,进而可求得勒洛三角形的面积.【详解】设等边三角形的边长为,则,解得,所以,由弧与所围成的弓形的面积为,所以该勒洛三角形的面积.故答案为:.16、①.②.【解析】利用射影定理求得,结合图象判断出的大小关系.【详解】在中,由射影定理得,即.在中,由射影定理得,即根据图象可知,即.故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)证明见解析【解析】(1)根据诱导公式和正弦、余弦函数的性质可得答案;(2)令,分,,三种情况,分别根据零点存在定理可得证.【详解】解:(1)由,得,所以当时,上述方程的解为或,即方程在上的解为或;(2)证明:令,则,①当时,,令,则,即此时方程有解;②当时,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解;③当时,,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解.综上,对任意的,方程都有解18、(1)(2)答案见解析【解析】(1)由题得,利用基本不等式可求;(2)不等式即,讨论的大小可求解.【小问1详解】由,得.,,即(当且仅当时“”成立.).故的最大值为;【小问2详解】,即.当时,即时,不等式的解集为当时,即时,不等式的解集为;当时,即时,不等式的解集为.综上,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.19、(1)人数为,;(2)7.42;(3)约为人.【解析】(1)由分层抽样等比例性质求高一年级学生的人数,根据直方图及频率和为1求参数a.(2)由频率直方图及中位数的性质估计中位数.(3)由直方图计算区间的频率,进而估计全校睡眠时间不低于7个小时的学生人数.【小问1详解】由分层抽样等比例的性质,样本中高一年级学生的人数为.由,可得.【小问2详解】设中位数为x,由、,知:,∴.得,故样本数据的中位数约为7.42.【小问3详解】由图可知,样本数据落在的频率为.故全校睡眠时间不低于7个小时的学生人数约为人.20、解:(Ⅰ)x-y-1=0;(Ⅱ)2【解析】(1)由题意,求得直线的斜率,从而得到,利用直线的点斜式方程,即可求解直线的方程;(2)由,求得,利用两点间的距
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程建设管理与施工标准化作业指导书
- 工程项目管理规范操作流程解读
- 游戏开发实践作业指导书
- 农业信息化技术推广应用作业指导书
- 标准钢材购销合同
- 测绘劳务分包合同
- 出口销售合同
- 小麦种子购销合同
- 员工试用劳动合同
- 2025年呼和浩特道路货运从业资格证模拟考试
- 《社会主义市场经济理论(第三版)》第七章社会主义市场经济规则论
- 《腰椎间盘突出》课件
- 汉声数学图画电子版4册含妈妈手册文本不加密可版本-29.统计2500g早教
- simotion轮切解决方案与应用手册
- 搬家公司简介(15个范本)
- 柴油发电机运行检查记录表格
- 典范英语-2备课材料2a课件
- DSC曲线反映PET得结晶度
- 科学素养全稿ppt课件(完整版)
- 建筑智能化培训课件
- ICF的分类架构与编码原则
评论
0/150
提交评论