2024年四川省南充市高坪区南充市高坪中学数学九年级第一学期开学质量检测模拟试题【含答案】_第1页
2024年四川省南充市高坪区南充市高坪中学数学九年级第一学期开学质量检测模拟试题【含答案】_第2页
2024年四川省南充市高坪区南充市高坪中学数学九年级第一学期开学质量检测模拟试题【含答案】_第3页
2024年四川省南充市高坪区南充市高坪中学数学九年级第一学期开学质量检测模拟试题【含答案】_第4页
2024年四川省南充市高坪区南充市高坪中学数学九年级第一学期开学质量检测模拟试题【含答案】_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2024年四川省南充市高坪区南充市高坪中学数学九年级第一学期开学质量检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列各点中,在双曲线y=-上的点是().A.(,-9) B.(3,1) C.(-1,-3) D.(6,)2、(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,BC=6,则下列正确的是()A.ED=BE B.ED=2BE C.ED=3BE D.ED=4BE3、(4分)对于二次根式,以下说法不正确的是()A.它是一个无理数 B.它是一个正数 C.它是最简二次根式 D.它有最小值为34、(4分)如图,直线y=k1x与直线y=k2x+b相交于点(1,﹣1),则不等式k1x<k2x+b的解集是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣15、(4分)若直角三角形的两条直角边的长分别为6和8,则斜边上的中线长是()A.6 B.5 C.7 D.不能确定6、(4分)在平行四边形中,于点,于点,若,,平行四边形的周长为,则()A. B. C. D.7、(4分)如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cm B.4.8cm C.5cm D.9.6cm8、(4分)到三角形三条边的距离相等的点是三角形()的交点.A.三条中线 B.三条角平分线 C.三条高 D.三条边的垂直平分线二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知长方形的面积为6m2+60m+150(m>0),长与宽的比为3:2,则这个长方形的周长为_____.10、(4分)用反证法证明“若,则”时,应假设_____.11、(4分)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF,CF,则下列结论中一定成立的是______.(把所有正确结论的序号都填在横线上)(1)∠DFC+∠FEC=90°;(2)∠B=∠AEF;(3)CF=EF;(4)12、(4分)矩形内一点到顶点,,的长分别是,,,则________________.13、(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为_____.三、解答题(本大题共5个小题,共48分)14、(12分)定义:如果一元一次不等式①的解都是一元一次不等式②的解,那么称一元一次不等式①是一元一次不等式②的蕴含不等式.例如:不等式的解都是不等式的解,则是的蕴含不等式.(1)在不等式,,中,是的蕴含不等式的是_______;(2)若是的蕴含不等式,求的取值范围;(3)若是的蕴含不等式,试判断是否是的蕴含不等式,并说明理由.15、(8分)如图,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.16、(8分)某公司招聘一名员工,现有甲、乙两人竞聘,公司聘请了3位专家和4位群众代表组成评审组,评审组对两人竟聘演讲进行现场打分,记分采用100分制,其得分如下表:评委(序号)1234567甲(得分)89949387959287乙(得分)87899195949689(1)甲、乙两位竞聘者得分的中位数分别是多少(2)计算甲、乙两位应聘者平均得分,从平均得分看应该录用谁(结果保留一位小数)(3)现知道1、2、3号评委为专家评委,4、5、6、7号评委为群众评委,如果对专家评委组与群众评委组的平均分数分别赋子适当的权,那么对专家评委组赋的权至少为多少时,甲的平均得分比乙的平均得分多0.5分及以上17、(10分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000酒店豪华间有多少间?旺季每间价格为多少元?18、(10分)如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE⊥AC,垂足为E.连接BE(1)求证:在四边形ABCD是平行四边形(2)若△ABE是等边三角形,四边形BCDE的面积等于4,求AE的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一次函数与的图象如图所示,则不等式kx+b<x+a的解集为_____.20、(4分)若一次函数y=kx+1(k为常数,0)的图象经过第一、二、四象限,则k的取值范围是_______________.21、(4分)若反比例函数y=的图象经过点(2,﹣3),则k=_____.22、(4分)在矩形ABCD中,AB=2,AD=3,点P是BC上的一个动点,连接AP、DP,则AP+DP的最小值为_____.23、(4分)在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).二、解答题(本大题共3个小题,共30分)24、(8分)绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:(1)按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的政府补贴?(2)为满足农民需求,商场决定用不超过85000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的.①请你帮助该商场设计相应的进货方案;②哪种进货方案商场获得利润最大(利润=售价-进价),最大利润是多少?25、(10分)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;26、(12分)作图:如图,平面内有A,B,C,D四点按下列语句画图:(1)画射线AB,直线BC,线段AC(2)连接AD与BC相交于点E.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

将各点代入曲线的解析式进行计算即可.【详解】A.(,-9),在双曲线解析式上;B.(3,1),不在双曲线解析式上;C.(-1,-3),不在双曲线解析式上;D.(6,),不在双曲线解析式上;故答案为:A.本题考查了双曲线的点的问题,掌握代入法是解题的关键.2、C【解析】

根据矩形的性质,AD=BC=6,则根据直角三角形的性质,得到∠ADE=30°,则得到∠BAE=30°,利用勾股定理求出DE的长度和BE的长度,即可得到答案.【详解】解:在矩形ABCD中,∠BAD=90°,AD=BC=6,∵AE⊥BD,AE=3,∴,∵Rt△ADE中,,∴∠ADE=30°,∵,∴,∴,∵,即,∴,∴;故选:C.本题考查了矩形的性质,利用勾股定理解直角三角形,含30°直角三角形的性质,以及同角的余角相等,解题的关键是熟练掌握所学的知识,正确求出DE和BE的长度.3、A【解析】

根据最简二次根式的定义:被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【详解】是一个非负数,是最简二次根式,最小值是3,

当时x=0,是有理数,故A错误;故选A.考查了最简二次根式,利用最简二次根式的性质是解题关键.4、A【解析】

由图象得到直线y=k1x与直线y=k2x+b相交于点(1,﹣1),观察直线y=k1x落在直线y=k2x+b的下方对应的x的取值即为所求.【详解】.解:∵直线y=k1x与直线y=k2x+b相交于点(1,﹣1),∴当x>1时,k1x<k2x+b,即k1x<k2x+b的解集为x>1,故选:A.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.5、B【解析】

首先根据勾股定理,求出斜边长,然后根据直角三角形斜边中线定理,即可得解.【详解】根据勾股定理,得斜边长为则斜边中线长为5,故答案为B.此题主要考查勾股定理和斜边中线定理,熟练掌握,即可解题.6、D【解析】

已知平行四边形的高AE、AF,设BC=xcm,则CD=(20-x)cm,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.【详解】解:设BC=xcm,则CD=(20−x)cm,根据“等面积法”得,4x=6(20−x),解得x=12,∴平行四边形ABCD的面积=4x=4×12=48;故选D.本题主要考查了平行四边形的性质,掌握平行四边形的性质是解题的关键.7、B【解析】

解:如图所示:∵四边形ABCD是菱形,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB=,∵菱形ABCD的面积=AB•DE=AC•BD=×8×6=24,∴DE==4.8;故选B.8、B【解析】

到三角形三条边距离相等的点是三角形的内心.【详解】解:到三角形三条边距离相等的点是三角形的内心,即三个内角平分线的交点.

故选:B.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、10m+1【解析】

对面积表达式进行变形,根据面积=长×宽,再根据长与宽的比是3:2,判断出长宽的表达式,继而得出周长.【详解】解:∵6m2+60m+11=6(m2+10m+25)=6(m+5)2=[3(m+5)][2(m+5)],且长:宽=3:2,∴长为3(m+5),宽为2(m+5),∴周长为:2[3(m+5)+2(m+5)]=10m+1.故答案为:10m+1本题考查了用提取公因式和完全平方公式进行因式分解的实际应用,熟练掌握并准确分析是解题的关键.10、【解析】

反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】解:用反证法证明“若,则”时,应假设.故答案为:.此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.11、(1)(3)【解析】

分别利用平行四边形的性质以及全等三角形的判定得出△AEF≌△DMF,得出角、线段之间关系,得出(1)(3)成立,(2)不成立;再由梯形面积和平行四边形面积关系进而得出(4)不成立.【详解】解:∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,延长EF,交CD延长线于M,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵∠B=∠ADC>∠M,∴∠B>∠AEF,(2)不成立;∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴CF=EF,(3)成立;∴∠FEC=∠FCE,∵∠DCF+∠FEC=90°,∴∠DFC+∠FEC=90°,(1)成立;∵四边形ADCE的面积=(AE+CD)×CE,F是AD的中点,∴S△EFC=S四边形ADCE,∵S△BDC=S平行四边形ABCD=CD×CE,∴S△EFC≠S△BDC,(4)不成立;故答案为:(1)(3).此题主要考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识,证出△AEF≌△DMF是解题关键.12、【解析】

如图作PE⊥AB于E,EP的延长线交CD于F,作PGLBC于G.则四边形AEFD是矩形,四边形EBGP是矩形,四边形PFCG是矩形,设AE=DF=a,EP=BG=b,BE=PG=c,PF=CG=d,则有a2+b2=9,c2+a2=16,c2+d2=25,可得2(a2+c2)+b2+d2=9+16+25推出b2+d2=18,即可解决问题.【详解】解:如图作PELAB于E,EP的延长线交CD于F,作PGLBC于G.则四边形AEFD是矩形,四边形EBGP是矩形,四边形PFCG是矩形.设AE=DF=a,EP=BG=b,BE=PG=c,PF=CG=d,则有:a2+b2=9,c2+a2=16,c2+d2=25∴2(a2+c2)+b2+d2=9+16+25∴b2+d2=18∴PD=,故答案为.本题考查矩形的性质、勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.13、1.【解析】试题解析:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=2,∠BAQ=∠DQA,∴∠DAQ=∠DAQ,∴△AQD是等腰三角形,∴DQ=AD=2.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=2+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+2)=1.故答案为1.三、解答题(本大题共5个小题,共48分)14、(1)x>3;(2)m<9;(3)是,理由见解析.【解析】

(1)根据蕴含不等式的定义求解即可;(2)先求出不等式的解集,再根据蕴含不等式的定义求出m的取值范围即可;(3)由是的蕴含不等式求出n的取值范围,再判断是否是的蕴含不等式.【详解】(1)由蕴含不等式的定义得,是的蕴含不等式.故答案为:;(2)由得,x>3-m,∵是的蕴含不等式,∴3-m>-6,∴m<9;(3)∵是的蕴含不等式,∴∴n>1,∴-n<-1,∴-n+3<2∴是的蕴含不等式.此题主要考查了不等式的解集,关键是正确确定两个不等式的解集.15、证明见解析【解析】

首先根据平行线的性质可得∠BEC=∠DFA,再加上条件∠ADF=∠CBE,AF=CE,可证明△ADF≌△CBE,再根据全等三角形的性质可得BE=DF,根据一组对边平行且相等的四边形是平行四边形进行判定即可.【详解】证明:∵BE∥DF,∴∠BEC=∠DFA∵在△ADF和△CBE中,,∴△ADF≌△CBE(AAS)∴BE=DF,又∵BE∥DF,∴四边形DEBF是平行四边形本题考查平行四边形的判定.16、(1)甲得分中位数为:92(分),乙得分中位数为:91(分);(2)甲平均得分:91(分),乙平均得分:91.6(分),平均得分看应该录用乙;(3)专家评委组赋的权至少为0.6时,甲的平均得分比乙的平均得分多0.5分及以上.【解析】

(1)将甲、乙二人的成绩分别排序找出中间位置的一个数即可,(2)根据算术平均数的计算方法求平均数即可,(3)根据加权平均数的求法设出权数,列不等式解答即可.【详解】(1)甲得分:87878992939495,中位数为:92(分),乙得分:87898991949596,中位数为:91(分);(2)甲平均得分:甲=92+(-3+2+1-5+3+0-5)=91(分),乙平均得分:乙=92+(-5-3-1+3+2+4-3)≈91.6(分),从平均得分看应该录用乙;(3)设专家评委组赋的权至少为x时,甲的平均得分比乙的平均得分多0.5分及以上,(89+94+93)x+(87+95+92+87)(1-x)≥(87+89+91)x+(95+94+96+89)(1-x)即:276x+361-361x≥267x+374-374x解得:x≥≈0.6所以,专家评委组赋的权至少为0.6时,甲的平均得分比乙的平均得分多0.5分及以上。考查中位数、算术平均数、加权平均数的意义及计算方法,理解权重对平均数的影响是解决问题的关键.17、该酒店豪华间有50间,旺季每间价格为800元.【解析】

根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;【详解】设淡季每间的价格为x元,酒店豪华间有y间,,解得,,∴x+13x=600+13×600=800,答:该酒店豪华间有50间,旺季每间价格为800元;此题考查二元一次方程组的应用,解题关键在于理解题意列出方程组.18、(1)证明见解析;(2)1.【解析】分析:(1)可利用两组对角分别相等的四边形是平行四边形进行证明;(2)利用同底等高说明△CED与△CEB的面积关系,再根据四边形的面积得到△CED的面积,求出边长CD,即可得出结论.详解:(1)∵AB∥CD,∴∠DAB+∠ADC=∠ABC+∠BCD=180°.∵∠ABC=∠ADC,∴∠DAB=∠BCD,∴四边形ABCD是平行四边形;(2)∵AB∥CD,∴∠BAC=∠ACD.∵△ABE是等边三角形,∴AB=AE=CD,∠BAC=∠ACD=60°.在Rt△CDE中,设CD的长为a,则CE=a,DE=,S△CED=.因为△CED与△CEB是同底等高的三角形,∴S△CED=S△CEB.又∵S四边形BCDE=S△CED+S△CEB=1,∴S△CED=.即=.所以a=1.即AE=CD=1.点睛:本题考查了平行四边形的判定,及直角三角形的面积公式.解答本题的关键是利用面积确定直角△CDE的面积.一、填空题(本大题共5个小题,每小题4分,共20分)19、x>1【解析】

利用函数图象,写出直线在直线下方所对应的自变量的范围即可.【详解】解:根据图象得,当x>1时,kx+b<x+a.故答案为x>1.本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线在直线下方所对应的所有的点的横坐标所构成的集合.数型结合是解题的关键.20、k<1【解析】

根据一次函数图象所经过的象限确定k的符号.【详解】解:∵一次函数y=kx+1(k为常数,k≠1)的图象经过第一、二、四象限,

∴k<1.

故填:k<1.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限.k<1时,直线必经过二、四象限.b>1时,直线与y轴正半轴相交.b=1时,直线过原点;b<1时,直线与y轴负半轴相交.21、-1【解析】

把点A(2,﹣3)代入y=求得k的值即可.【详解】∵反比例函数y=的图象经过点(2,﹣3),∴﹣3=,解得,k=﹣1,故答案为:﹣1.本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.22、1【解析】

作点D关于BC的对称点D',连接AD',PD',依据AP+DP=AP+PD'≥AD',即可得到AP+DP的最小值等于AD'的长,利用勾股定理求得AD'=1,即可得到AP+DP的最小值为1.【详解】解:如图,作点D关于BC的对称点D',连接AD',PD',则DD'=2DC=2AB=4,PD=PD',∵AP+DP=AP+PD'≥AD',∴AP+DP的最小值等于AD'的长,∵Rt△ADD'中,AD'===1,∴AP+DP的最小值为1,故答案为:1.本题考查的是最短线路问题及矩形的性质,熟知两点之间线段最短的知识是解答此题的关键.23、0.1【解析】

大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.1附近,故摸到白球的频率估计值为0.1;故答案为:0.1.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论