2024年四川省成都市天府新区九级九上数学开学考试试题【含答案】_第1页
2024年四川省成都市天府新区九级九上数学开学考试试题【含答案】_第2页
2024年四川省成都市天府新区九级九上数学开学考试试题【含答案】_第3页
2024年四川省成都市天府新区九级九上数学开学考试试题【含答案】_第4页
2024年四川省成都市天府新区九级九上数学开学考试试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2024年四川省成都市天府新区九级九上数学开学考试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是A.平均数 B.中位数 C.众数 D.方差2、(4分)如图,已知,那么添加下列一个条件后,仍然无法判定的是()A. B. C. D.3、(4分)某商场要招聘电脑收银员,应聘者需通过计算机、语言和商品知识三项测试,小明的三项成绩(百分制)依次是70分,50分,80分,其中计算算机成绩占50%,语言成绩占30%,商品知识成绩占20%.则小明的最终成绩是()A.66分 B.68分 C.70分 D.80分4、(4分)如图,要使□ABCD成为矩形,需添加的条件是()A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠25、(4分)在平面直角坐标系中,把点绕原点顺时针旋转所得到的点的坐标是()A. B. C. D.6、(4分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15° B.30° C.45° D.60°7、(4分)如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的A. B. C. D.8、(4分)下列各组数中不能作为直角三角形的三边长的是()A.7,24,25 B.,4,5 C.,1, D.40,50,60二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图所示,一次函数y=kx+b的图象与x轴的交点为(-2,0①y的值随x的值的增大而增大;②b>0;③关于x的方程kx+b=0的解为x=-2.其中说法正确的有______(只写序号)10、(4分)在平面直角坐标系中,已知点,直线与线段有交点,则的取值范围为__________.11、(4分)如图,在矩形ABCD中,AB=6,AD=4,过矩形ABCD的对角线交点O作直线分别交CD、AB于点E、F,连接AE,若△AEF是等腰三角形,则DE=______.12、(4分)如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为_________________.13、(4分)关于x的方程的一个根为1,则m的值为.三、解答题(本大题共5个小题,共48分)14、(12分)如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.(1)求证:四边形ADCE是平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.15、(8分)某市教委为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,启动了“学生阳光体育运动”,其中有一项是短跑运动,短跑运动可以锻炼人的灵活性,增强人的爆发力,因此张明和李亮在课外活动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:成绩统计分析表(1)张明第2次的成绩为__________秒;(2)请补充完整上面的成绩统计分析表;(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁?请说明理由.16、(8分)如图,将▱ABCD的对角线AC分别向两个方向延长至点E,F,且,连接BE,求证:.17、(10分)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交C于F,EG⊥AB于G,请判断四边形GECF的形状,并证明你的结论.18、(10分)如图,在中,,,点、同时从点出发,以相同的速度分别沿折线、射线运动,连接.当点到达点时,点、同时停止运动.设,与重叠部分的面积为.(1)求长;(2)求关于的函数关系式,并写出的取值范围;(3)请直接写出为等腰三角形时的值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则关于x的方程k1x+a=k2x+b的解是_____.20、(4分)如图,在平行四边形中,于点,若,则的度数为________.21、(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD=2,AE=3,则正方形ODCE的边长等于________.22、(4分)在1,2,3,这四个数中,任选两个数的积作为k的值,使反比例函数的图象在第二、四象限的概率是________.23、(4分)分解因式:9a﹣a3=_____.二、解答题(本大题共3个小题,共30分)24、(8分)已知:如图,在四边形ABCD中,AB=3CD,AB∥CD,CE∥DA,DF∥CB.(1)求证:四边形CDEF是平行四边形;(2)填空:①当四边形ABCD满足条件时(仅需一个条件),四边形CDEF是矩形;②当四边形ABCD满足条件时(仅需一个条件),四边形CDEF是菱形.25、(10分)(1)已知y﹣2与x成正比例,且x=2时,y=﹣1.①求y与x之间的函数关系式;②当y<3时,求x的取值范围.(2)已知经过点(﹣2,﹣2)的直线l1:y1=mx+n与直线l2:y2=﹣2x+1相交于点M(1,p)①关于x,y的二元一次方程组的解为;②求直线l1的表达式.26、(12分)如图,在梯形中,,,,,(1)求对角线的长度;(2)求梯形的面积.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差==,添加数字2后的方差==,故方差发生了变化.故选D.2、A【解析】

先根据∠DAB=∠CAE得出∠DAE=∠BAC,再由相似三角形的判定定理对各选项进行逐一判定即可.【详解】∵∠DAB=∠CAE,∴∠DAE=∠BAC.A.∵,∠B与∠D的大小无法判定,∴无法判定△ABC∽△ADE,故本选项正确;B.∵,∴△ABC∽△ADE,故本选项错误;C.∵∠B=∠D,∴△ABC∽△ADE,故本选项错误;D.∵∠C=∠AED,∴△ABC∽△ADE,故本选项错误.故选A.本题考查了相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.3、A【解析】

根据加权平均数的定义列式计算可得.【详解】解:小明最终的成绩是70×50%+50×30%+80×20%=66(分),故选:A.本题考查了加权平均数的计算,加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权).数据的权能反映数据的相对“重要程度”,对于同样的一组数据,若权重不同,则加权平均数很可能是不同的.4、B【解析】

根据一个角是90度的平行四边形是矩形进行选择即可.【详解】解:A、是邻边相等,可判定平行四边形ABCD是菱形;

B、是一内角等于90°,可判断平行四边形ABCD成为矩形;

C、是对角线互相垂直,可判定平行四边形ABCD是菱形;

D、是对角线平分对角,可判断平行四边形ABCD成为菱形;故选:B.本题主要应用的知识点为:矩形的判定.①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.5、C【解析】

根据旋转的性质,即可得到点B的坐标.【详解】解:把点绕原点顺时针旋转,∴点B的坐标为:.故选:C.本题考查了旋转的性质,解题的关键是熟练掌握点坐标顺时针旋转90°的性质.6、A【解析】

先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【详解】∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°,故选A.此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.7、C【解析】

解:∵AB被截成三等分,∴△AEH∽△AFG∽△ABC,∴,∴S△AFG:S△ABC=4:9S△AEH:S△ABC=1:9∴S阴影部分的面积=S△ABC﹣S△ABC=S△ABC故选C.8、D【解析】

根据勾股定理的逆定理依次计算各项后即可解答.【详解】选项A,∵72+242=252,∴7,24,25能构成直角三角形;选项B,∵42+52=()2,∴,4,5能构成直角三角形;选项C,∵12+()2=()2,∴,1,能构成直角三角形;选项D,∵402+502≠602,∴40,50,60不能构成直角三角形.故选D.本题考查了勾股定理的逆定理,熟练运用勾股定理的逆定理是解决问题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、①②③.【解析】

一次函数及其应用:用函数的观点看方程(组)或不等式.【详解】由图象得:①y的值随x的值的增大而增大;②b>0;③关于x的方程kx+b=0的解为x=-2.故答案为:①②③.本题考查了一次函数与一元一次方程,利用一次函数的性质、一次函数与一元一次方程的关系是解题关键.10、【解析】

要使直线与线段AB交点,则首先当直线过A是求得k的最大值,当直线过B点时,k取得最小值.因此代入计算即可.【详解】解:当直线过A点时,解得当直线过B点时,解得所以要使直线与线段AB有交点,则故答案为:本题主要考查正比例函数的与直线相交求解参数的问题,这类题型是考试的热点,应当熟练掌握.11、或1【解析】

连接AC,如图1所示:由矩形的性质得到∠D=90°,AD=BC=4,OA=OC,AB∥DC,求得∠OAF=∠OCE,根据全等三角形的性质得到AF=CE,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,如图1所示:设AE=AF=CE=x,则DE=6-x,根据勾股定理即可得到结论;②当AE=EF时,作EG⊥AF于G,如图1所示:设AF=CE=x,则DE=6-x,AG=x,列方程即可得到结论;③当AF=FE时,作FH⊥CD于H,如图3所示:设AF=FE=CE=x,则BF=6-x,则CH=BF=6-x,根据勾股定理即可得到结论.【详解】解:连接AC,如图1所示:∵四边形ABCD是矩形,∴∠D=90°,AD=BC=4,OA=OC,AB∥DC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,如图1所示:设AE=AF=CE=x,则DE=6-x,在Rt△ADE中,由勾股定理得:41+(6-x)1=x1,解得:x=,即DE=;②当AE=EF时,作EG⊥AF于G,如图1所示:则AG=AE=DE,设AF=CE=x,则DE=6-x,AG=x,∴x=6-x,解得:x=4,∴DE=1;③当AF=FE时,作FH⊥CD于H,如图3所示:设AF=FE=CE=x,则BF=6-x,则CH=BF=6-x,∴EH=CE-CH=x-(6-x)=1x-6,在Rt△EFH中,由勾股定理得:41+(1x-6)1=x1,整理得:3x1-14x+51=0,∵△=(-14)1-4×3×51<0,∴此方程无解;综上所述:△AEF是等腰三角形,则DE为或1;故答案为:或1.此题考查矩形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质,根据勾股定理得出方程是解题的关键,注意分类讨论.12、(21008,21009).【解析】观察,发现规律:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∵2017=1008×2+1,∴A2017的坐标为((﹣2)1008,2(﹣2)1008),即A2017(21008,21009).故答案为(21008,21009).【点睛】本题主要考查一次函数图象中点的坐标特征以及规律问题中点的坐标变化特征,解题的关键是找出变化规律A2n+1((﹣2)n,2(﹣2)n)(n为自然数).解决时的关键是要先写出一些点的坐标,根据坐标的特征找出变化的规律.13、1【解析】试题分析:把x=1代入方程得:1-2m+m=0,解得m=1.考点:一元二次方程的根.三、解答题(本大题共5个小题,共48分)14、见解析【解析】试题分析:(1)由已知条件易证△AFE≌△DFB,从而可得AE=BD=DC,结合AE∥BC即可证得四边形ADCE是平行四边形;(2)由(1)可知,AE=BD=CD;由BE平分∠AEC,结合AE∥BC可证得△BCE是等腰三角形,从而可得EC=BC,结合AD=EC、AF=DF,可得AF=DF=AE;由此即可得与AE相等的线段有BD、CD、AF、DF共四条.试题解析:(1)∵AE∥BC,∴∠AEF=∠DBF,∠EAF=∠FDB,∵点F是AD的中点,∴AF=DF,∴△AFE≌△DFB,∴AE=CD,∵AD是△ABC的中线,∴DC=AD,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形;(2)∵BE平分∠AEC,∴∠AEB=∠CEB,∵AE∥BC,∴∠AEB=∠EBC,∴∠CEB=∠EBC,∴EC=BC,∵由(1)可知,AD=EC,BD=DC=AE,∴AD=BC,又∵AF=DF,∴AF=DF=BD=DC=AE,即图中等于AE的线段有4条,分别是:AF、DF、BD、DC.15、(1)13.4;(2)13.3,13.3;(3)选择张明【解析】

根据折线统计图写出答案即可根据已知条件求得中位数及平均线即可,中数是按顺序排列的一组数据中居于中间位置的数,平均数是指在一组数据中所有数据之和再除以数据的个数.根据平均线一样,而张明的方差较稳定,所以选择张明.【详解】(1)根据折线统计图写出答案即可,即13.4;(2)中数是按顺序排列的一组数据中居于中间位置的数,即是13.3,平均数是指在一组数据中所有数据之和再除以数据的个数.即(13.2+13.4+13.1+13.5+13.3)5=13.3;(3)选择张明参加比赛.理由如下:因为张明和李亮成绩的平均数、中位数都相同,但张明成绩的方差小于李亮成绩的方差,张明的成绩较稳定,所以应该选择张明参加比赛.本题考查平均数、中位数和方差,熟练掌握计算法则和它们的性质是解题关键.16、证明见解析【解析】

由平行四边形性质得,,,又证≌,可得,.【详解】证明:四边形ABCD是平行四边形,,,,,,,在和中,,≌,.本题考核知识点:平行四边形性质,全等三角形.解题关键点:由全等三角形性质得到线段相等.17、四边形GECF是菱形,理由详见解析.【解析】试题分析:根据全等三角形的判定定理HL进行证明Rt△AEG≌Rt△AEC(HL),得到GE=EC;根据平行线EG∥CD的性质、∠BAC平分线的性质以及等量代换推知∠FEC=∠CFE,易证CF=CE;从而根据邻边相等的平行四边形是菱形进行判断.试题解析:四边形GECF是菱形,理由如下:∵∠ACB=90°,∴AC⊥EC.又∵EG⊥AB,AE是∠BAC的平分线,∴GE=CE.在Rt△AEG与Rt△AEC中,,∴Rt△AEG≌Rt△AEC(HL),∴GE=EC,∵CD是AB边上的高,∴CD⊥AB,又∵EG⊥AB,∴EG∥CD,∴∠CFE=∠GEA,∵Rt△AEG≌Rt△AEC,∴∠GEA=∠CEA,∴∠CEA=∠CFE,即∠CEF=∠CFE,∴CE=CF,∴GE=EC=FC,又∵EG∥CD,即GE∥FC,∴四边形GECF是菱形.考点:菱形的判定.18、(1);(2);(3)或.【解析】

(1)过点A作AM⊥BC于点M,由等腰三角形的性质可得∠B=∠C=30°,BM=CM=BC,由直角三角形的性质可得BM=2,即可求BC的值;

(2)分点P在AB上,点P在AC上,点Q在BC的延长线上时,三种情况讨论,由三角形的面积公式可求S关于x的函数关系式;

(3)分两种情况讨论,由等腰三角形的性质可求解.【详解】解:(1)过点作于点,∵,,∴,.在中,,,∴,∴,.∴.(2)因为点,同时出发且速度相同,所以两点运动的路程相同情况①:当时,此时点在线段上,如图1过点作于点,在中,∵,,∴.∴与重叠部分的面积.情况②:当时,此时点在线段上,如图2过点作于点,此时,,∵,,∴,∴.在中,∵,,∴.∴与重叠部分的面积.情况③:当时,此时点在线段上,在线段延长线上,如图3过点作于点,由情况②同理可得:,∴与重叠部分的面积为的面积,则.综上所述:与重叠部分的面积.(3)或①当点在上,点在上时,不可能是等腰三角形.②当点在上,点在上时,,,③当点在上,点在的延长线时,,.三角形综合题,考查了等腰三角形的性质,动点函数问题,利用分类讨论思想解决问题是本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、x=1【解析】

由交点坐标就是该方程的解可得答案.【详解】关于x的方程k2x+b=k1x+a的解,即直线y1=k1x+a与直线y2=k2x+b的交点横坐标,所以方程的解为x=1.故答案为:1.本题考查的知识点是一次函数与一元一次方程,一次函数的图象和性质,解题的关键是熟练的掌握一次函数与一元一次方程,一次函数的图象和性质.20、26°【解析】

根据可得△DBC为等腰三角形,则有∠DBC=∠C=64°,再根据平行四边形的对边互相平行,可得∠ADB=∠DBC=64°,最后再根据内角和定理来求得∠DAE的度数.【详解】解:∵,∠C=64°,∴∠DBC=∠C=64°,又∵四边形是平行四边形,∴AD∥BC,∴∠ADB=∠DBC=64°,又∵,∴∠DAE=90°−64°=26°.故答案为:26°.本题主要考查了平行四边形和等腰三角形的性质,熟练掌握是解题的关键.21、1【解析】

设正方形ODCE的边长为x,则CD=CE=x,根据全等三角形的性质得到AF=AE,BF=BD,根据勾股定理即可得到结论.【详解】解:设正方形ODCE的边长为x,

则CD=CE=x,

∵△AFO≌△AEO,△BDO≌△BFO,

∴AF=AE,BF=BD,

∴AB=2+3=5,

∵AC2+BC2=AB2,

∴(3+x)2+(2+x)2=52,

∴x=1,

∴正方形ODCE的边长等于1,

故答案为:1.本题考查了勾股定理的证明,全等三角形的性质,正方形的性质,熟练掌握勾股定理是解题的关键.22、【解析】

四个数任取两个有6种可能.要使图象在第四象限,则k<0,找出满足条件的个数,除以6即可得出概率.【详解】依题可得,任取两个数的积作为k的值的可能情况有6种(1,2)、(1,3)、(1,-4)、(2,3)、(2,-4)、(3,-4),要使反比例函数y=kx的图象在第二、四象限,则k<0,这样的情况有3种即(1,-4)、(2,-4)、(3,-4),故概率为:=.本题考查反比例函数的选择,根据题意找出满足情况的数量即是解题关键.23、a(3+a)(3﹣a).【解析】

先提公因式,再用平方差公式,可得答案.【详解】原式=a(9﹣a2)=a(3+a)(3﹣a).故答案为:a(3+a)(3﹣a).本题考查了因式分解,利用提公因式与平方差公式是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)详见解析;(2)①AD=BC;②AD⊥BC.【解析】

(1)利用两组对边分别平行的四边形是平行四边形,可得四边形AECD和四边形BFDC都是平行四边形,再由一组对边平行且相等的四边形是平行四边形可得CDEF是平行四边形.(2)①当AD=BC时,四边形EFCD是矩形.理由是:对角线相等的平行四边形是矩形;②当AD⊥BC时,四边形EFCD是菱形.理由是:对角线互相垂直的平行四边形是菱形.【详解】解:(1)证明:∵AB∥CD,CE∥AD,DF∥BC,∴四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论