内蒙古自治区乌海市乌达区2025届高二数学第一学期期末监测模拟试题含解析_第1页
内蒙古自治区乌海市乌达区2025届高二数学第一学期期末监测模拟试题含解析_第2页
内蒙古自治区乌海市乌达区2025届高二数学第一学期期末监测模拟试题含解析_第3页
内蒙古自治区乌海市乌达区2025届高二数学第一学期期末监测模拟试题含解析_第4页
内蒙古自治区乌海市乌达区2025届高二数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古自治区乌海市乌达区2025届高二数学第一学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列的前n项和为,,,则=()A. B.C. D.2.已知为偶函数,且,则___________.3.直线的斜率是()A. B.C. D.4.已知圆与抛物线的准线相切,则实数p的值为()A.2 B.6C.3或8 D.2或65.在数列中,,则的值为()A. B.C. D.以上都不对6.等比数列的各项均为正数,已知向量,,且,则A.12 B.10C.5 D.7.已知是直线的方向向量,为平面的法向量,若,则的值为()A. B.C.4 D.8.若数列满足,,则数列的通项公式为()A. B.C. D.9.如果命题为真命题,为假命题,那么()A.命题,都是真命题 B.命题,都是假命题C.命题,至少有一个是真命题 D.命题,只有一个是真命题10.为了防控新冠病毒肺炎疫情,某市疾控中心检测人员对外来入市人员进行核酸检测,人员甲、乙均被检测.设命题为“甲核酸检测结果为阴性”,命题为“乙核酸检测结果为阴性”,则命题“至少有一位人员核酸检测结果不是阴性”可表示为()A. B.C. D.11.已知等差数列的前n项和为Sn,首项a1=1,若,则公差d的取值范围为()A. B.C. D.12.如图,在四面体中,,,两两垂直,已知,,则直线与平面所成角的正弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则f(e)=__.14.已知函数的图像在点处的切线方程是,则=______15.已知抛物线C:的焦点为F,过M(4,0)的直线交C于A、B两点,设,的面积分别为、,则的最小值为______16.圆锥曲线的焦点在轴上,离心率为,则实数的值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足,.(1)求的通项公式;(2)设,求数列的前项和.18.(12分)双曲线(,)的离心率,且过点.(1)求a,b的值;(2)求与双曲线C有相同渐近线,且过点的双曲线的标准方程.19.(12分)已知函数R)(1)当时,求函数的图象在处的切线方程;(2)求的单调区间20.(12分)(1)求过点,且与直线垂直的直线方程;(2)甲,乙,丙等7名同学站成一排,若甲和乙相邻,但甲乙二人都不和丙相邻,则共有多少种不同排法?21.(12分)在①,②,③,这三个条件中任选一个,补充在下面的问题中,并解答问题在中,内角A,,的对边分别为,,,且满足______________(1)求;(2)若的面积为,在边上,且,求的最小值注:如果选择多个条件分别解答,按第一个解答计分22.(10分)如图,多面体中,平面平面,,四边形为平行四边形.(1)证明:;(2)若,求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用公式计算得到,得到答案【详解】由已知得,即,而,所以故选:D2、8【解析】由已知条件中的偶函数即可计算出结果,【详解】为偶函数,且,.故答案为:83、D【解析】把直线方程化为斜截式即得【详解】直线方程的斜截式为,斜率为故选:D4、D【解析】由抛物线准线与圆相切,结合抛物线方程,令求切线方程且抛物线准线方程为,即可求参数p.【详解】圆的标准方程为:,故当时,有或,所以或,得或6故选:D5、C【解析】由数列的递推公式可先求数列的前几项,从而发现数列的周期性的特点,进而可求.【详解】解:,数列是以3为周期的数列故选:【点睛】本题主要考查了利用数列的递推公式求解数列的项,解题的关键是由递推关系发现数列的周期性的特点,属于基础题.6、C【解析】利用数量积运算性质、等比数列的性质及其对数运算性质即可得出【详解】向量=(,),=(,),且•=4,∴+=4,由等比数列的性质可得:=……===2,则log2(•)=故选C【点睛】本题考查数量积运算性质、等比数列的性质及其对数运算性质,考查推理能力与计算能力,属于中档题7、A【解析】由,可得,再计算即可求解.【详解】由题意可知,所以,即.故选:A8、B【解析】根据等差数列的定义和通项公式直接得出结果.【详解】因为,所以数列是等差数列,公差为1,所以.故选:B9、D【解析】由命题为真命题,可判断二者至少有一个为真命题,由为假命题,可判断二者至少有一个为假命题,由此可得答案.【详解】命题为真命题,说明二者至少有一个为真命题,为假命题,说明二者至少有一个为假命题,综合上述,可知命题,只有一个是真命题,故选:D10、D【解析】表示出和,直接判断即可.【详解】命题为“甲核酸检测结果为阴性”,则命题为“甲核酸检测结果不是阴性”;命题为“乙核酸检测结果为阴性”,则命题为“乙核酸检测结果不是阴性”.故命题“至少有一位人员核酸检测结果不是阴性”可表示为.故选D.11、A【解析】该等差数列有最大值,可分析得,据此可求解.【详解】,故,故有故d取值范围为.故选:A12、D【解析】利用三线垂直建立空间直角坐标系,将线面角转化为直线的方向向量和平面的法向量所成的角,再利用空间向量进行求解.【详解】以,,所在直线为轴,轴,轴建立空间直角坐标系(如图所示),则,,,,,设平面的一个法向量为,则,即,令,则,,所以平面的一个法向量为;设直线与平面所成角为,则,即直线与平面所成角的正弦值为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由导数得出,再求.【详解】∵,∴,,解得,,,故答案为:.14、3【解析】根据导数几何意义,可得的值,根据点M在切线上,可求得的值,即可得答案.【详解】由导数的几何意义可得,,又在切线上,所以,则=3,故答案为:3【点睛】本题考查导数的几何意义的应用,考查分析理解的能力,属基础题.15、【解析】设直线的方程为,,与抛物线的方程联立整理得,由三角形的面积公式求得,再根据基本不等式可得答案.【详解】解:由抛物线C:得焦点,又直线交C于A、B两点,所以直线的斜率不为0,则设直线的方程为,,联立,整理得,则,又,,所以,又,当且仅当,即时取等号,所以的最小值为.故答案为:.16、【解析】根据圆锥曲线焦点在轴上且离心率小于1,确定a,b求解即可.【详解】因为圆锥曲线的焦点在轴上,离心率为,所以曲线为椭圆,且,所以,解得,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)设等差数列的公差为,根据题意可得出关于、的方程组,解出这两个量的值,可得出数列的通项公式;(2)求得,利用裂项法可求得.【小问1详解】解:设等差数列的公差为,则,可得,由可得,即,解得,,故.【小问2详解】解:,因此,.18、(1),(2)【解析】(1)根据已知条件建立关于a、b、c的方程组可解;(2)巧设与已知双曲线同渐近线的双曲线方程为可得.【小问1详解】因为离心率,所以.又因为点在双曲线C上,所以.联立上述方程,解得,,即,.【小问2详解】设所求双曲线的方程为,由双曲线经过点,得,即.所以双曲线的方程为,其标准方程为.19、(1)(2)答案见解析【解析】(1)根据切点处的导数等于切线斜率,切点在曲线上可得切线方程;(2)求导,分类讨论可得.【小问1详解】当时,,,,则,所以在处的切线方程为【小问2详解】,,当时,,函数在R上单调递增;当时,令,则,当时,,单调递减;当时,,单调递增当时,的单调递增区间为,当时,的单调递增区间为,单调递减区间为20、(1);(2)960【解析】(1)根据题意,设要求直线为,将点的坐标代入,求出的值,即可得答案;(2)根据题意,分2步进行分析:先将除甲乙丙之外的4人全排列,再将甲乙看成一个整体,与丙一起安排在4人的空位中,由分步计数原理计算可得答案【详解】解:(1)根据题意,设所求直线为,又由所求直线经过点,即,则,即所求直线;(2)根据题意,分2步进行分析:先将除甲乙丙之外的4人全排列,有种排法,再将甲乙看成一个整体,与丙一起安排在4人的空位中,有种排法,则有种排法21、选择见解析;(1);(2)【解析】(1)选条件①.利用正弦定理边角互化,结合两角和的正弦公式可得,从而可得答案;选条件②.边角互化、切化弦,结合两角和的正弦公式可得,从而得答案;选条件③.边角互化,利用余弦定理可得,从而可得答案;(2)由三角形面积公式可得得,再利用余弦定理与基本不等式可得答案.【详解】(1)方案一:选条件①由可得,由正弦定理得,因为,所以,所以,故,又,于是,即,因为,所以方案二:选条件②因为,所以由正弦定理及同角三角函数的基本关系式,得,即,因为,所以,又,所以,因为,所以方案三:选条件③∵,∴,即,∴,∴又,所以(2)由题意知,得由余弦定理得,当且仅当且,即,时取等号,所以的最小值为22、(1)证明见解析(2)【解析】(1)先通过平面平面得到,再结合,可得平面,进而可得结论;(2)取的中点,的中点,连接,,以点为坐标原点,分别以,,为轴,轴,轴建立空间直角坐标系,求出平面的一个法向量以及平面的一个法向量,求这两个法向量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论