2025届江苏常熟中学高二上数学期末考试模拟试题含解析_第1页
2025届江苏常熟中学高二上数学期末考试模拟试题含解析_第2页
2025届江苏常熟中学高二上数学期末考试模拟试题含解析_第3页
2025届江苏常熟中学高二上数学期末考试模拟试题含解析_第4页
2025届江苏常熟中学高二上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏常熟中学高二上数学期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在棱长均为1的平行六面体中,,则()A. B.3C. D.62.已知直线与椭圆:()相交于,两点,且线段的中点在直线:上,则椭圆的离心率为()A. B.C. D.3.下列事件:①连续两次抛掷同一个骰子,两次都出现2点;②某人买彩票中奖;③从集合中任取两个不同元素,它们的和大于2;④在标准大气压下,水加热到90℃时会沸腾.其中是随机事件的个数是()A.1 B.2C.3 D.44.已知i是虚数单位,复数z=,则复数z的虚部为()A.i B.-iC.1 D.-15.已知函数是区间上的可导函数,且导函数为,则“对任意的,”是“在上为增函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知点到直线:的距离为1,则等于()A. B.C. D.7.等比数列的公比为,则“”是“对于任意正整数n,都有”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件8.已知命题p:“是方程表示椭圆”的充要条件;命题q:“是a,b,c成等比数列”的必要不充分条件,则下列命题为真命题的是()A. B.C. D.9.在空间直角坐标系中,点关于原点对称的点的坐标为()A. B.C. D.10.已知为两条不同的直线,为两个不同的平面,则下列结论正确的是()A.若,则B.若,则C.若,则D.若,则11.设变量满足约束条件:,则的最小值()A. B.C. D.12.“”是“直线与直线互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.在中.若成公比为的等比数列,则____________14.甲、乙两名运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则甲、乙两组数据的中位数是______.15.已知的展开式中项的系数是,则正整数______________.16.在数列中,,,,若数列是递减数列,数列是递增数列,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,五边形为东京奥运会公路自行车比赛赛道平面设计图,根据比赛需要,在赛道设计时需预留出,两条服务通道(不考虑宽度),,,,,为赛道.现已知,,千米,千米(1)求服务通道的长(2)在上述条件下,如何设计才能使折线赛道(即)的长度最大,并求最大值18.(12分)设椭圆的左、右焦点分别为,,离心率为,短轴长为.(1)求椭圆的标准方程;(2)设左、右顶点分别为、,点在椭圆上(异于点、),求的值;(3)过点作一条直线与椭圆交于两点,过作直线的垂线,垂足为.试问:直线与是否交于定点?若是,求出该定点的坐标,否则说明理由.19.(12分)已知函数在处有极值.(1)求常数a,b的值;(2)求函数在上的最值.20.(12分)设数列的前n项和为,且,数列(1)求和的通项公式;(2)设数列的前n项和为,证明:21.(12分)已知动点到点的距离与点到直线的距离相等.(1)求动点的轨迹方程;(2)若过点且斜率为的直线与动点的轨迹交于、两点,求三角形AOB的面积.22.(10分)已知数列是等差数列,为其前n项和,,(1)求的通项公式;(2)若,求证:为等比数列

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设,,,利用结合数量积的运算即可得到答案.【详解】设,,,由已知,得,,,,所以,所以.故选:C2、A【解析】将直线代入椭圆方程整理得关于的方程,运用韦达定理,求出中点坐标,再由条件得到,再由,,的关系和离心率公式,即可求出离心率.【详解】解:将直线代入椭圆方程得,,即,设,,,,则,即中点的横坐标是,纵坐标是,由于线段的中点在直线上,则,又,则,,即椭圆的离心率为.故选:A3、B【解析】因为随机事件指的是在一定条件下,可能发生,也可能不发生的事件,只需逐一判断4个事件哪一个符合这种情况即可【详解】解:连续两次抛掷同一个骰子,两次都出现2点这一事件可能发生也可能不发生,①是随机事件某人买彩票中奖这一事件可能发生也可能不发生,②是随机事件从集合,2,中任取两个元素,它们的和必大于2,③是必然事件在标准大气压下,水加热到时才会沸腾,④是不可能事件故随机事件有2个,故选:B4、C【解析】先通过复数的除法运算求出z,进而求出虚部.【详解】由题意,,则z的虚部为1.故选:C.5、A【解析】根据充分条件与必要条件的概念,由导函数的正负与函数单调性之间关系,即可得出结果.【详解】因为函数是区间上的可导函数,且导函数为,若“对任意的,”,则在上为增函数;若在上为增函数,则对任意的恒成立,即由“对任意的,”能推出“在上为增函数”;由“在上为增函数”不能推出“对任意的,”,因此“对任意的,”是“在上为增函数”的充分不必要条件.故选:A6、D【解析】利用点到直线的距离公式,即可求得参数的值.【详解】因为点到直线:的距离为1,故可得,整理得,解得.故选:.7、D【解析】结合等比数列的单调性,根据充分必要条件的定义判断【详解】若,,则,,充分性不成立;反过来,若,,则时,必要性不成立;因此“”是“对于任意正整数n,都有”的既不充分也不必要条件.故选:D8、C【解析】先判断命题p,q的真假,从而判断的真假,再根据“或”“且”命题的真假判断方法,可得答案.【详解】当时,表示圆,故命题p:“是方程表示椭圆”的充要条件是假命题,命题q:“是a,b,c成等比数列”的必要不充分条件为真命题,则是真命题,是假命题,故是假命题,是假命题,是真命题,是假命题,故选:C9、C【解析】根据点关于原点对称的性质即可知答案.【详解】由点关于原点对称,则对称点坐标为该点对应坐标的相反数,所以.故选:C10、D【解析】根据空间里面直线与平面、平面与平面位置关系的相关定理逐项判断即可.【详解】A,若,则或异面,故该选项错误;B,若,则或相交,故该选项错误;C,若,则α,β不一定垂直,故该选项错误;D,若,则利用面面垂直的性质可得,故该选项正确.故选:D.11、D【解析】如图作出可行域,知可行域的顶点是A(-2,2)、B()及C(-2,-2),平移,当经过A时,的最小值为-8,故选D.12、A【解析】根据直线垂直求出的范围即可得出.【详解】由直线垂直可得,解得或1,所以“”是“直线与直线互相垂直”的充分不必要条件.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由条件可得,即,由余弦定理可得答案.【详解】由成公比为的等比数列,即由正弦定理可知所以故答案为:14、【解析】先由极差以及平均数得出,进而得出中位数.【详解】由可得,,,因为乙得分的平均值为24,所以,所以甲、乙两组数据的中位数是.故答案为:15、4【解析】由已知二项式可得展开式通项为,根据已知条件有,即可求出值.详解】由题设,,∴,则且为正整数,解得.故答案为:4.16、【解析】根据所给条件可归纳出当时,,利用迭代法即可求解.【详解】因为,,,所以,即,,且是递减数列,数列是递增数列或(舍去),,,故可得当时,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)服务通道的长为千米(2)时,折线赛道的长度最大,最大值为千米【解析】(1)先在中利用正弦定理得到长度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根据基本等式求解最值即可.【小问1详解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(负值舍去)所以服务通道的长为千米【小问2详解】在中,由余弦定理得:,即,所以因为,所以,所以,即(当且仅当时取等号)即当时,折线赛道的长度最大,最大值为千米18、(1);(2);(3)是,.【解析】(1)由题意,列出所满足的等量关系式,结合椭圆中的关系,求得,从而求得椭圆的方程;(2)写出,设,利用斜率坐标公式求得两直线斜率,结合点在椭圆上,得出,从而求得结果;(3)设直线的方程为:,,则,联立方程可得:,结合韦达定理,得到,结合直线的方程,得到直线所过的定点坐标.【详解】(1)由题意可知,,又,所以,所以椭圆的标准方程为:.(2),设,因为点在椭圆上,所以,,又,.(3)设直线的方程为:,,则,联立方程可得:,所以,所以,又直线的方程为:,令,则,所以直线恒过,同理,直线恒过,即直线与交于定点.【点睛】思路点睛:该题考查是有关椭圆的问题,解题思路如下:(1)根据题中所给的条件,结合椭圆中的关系,建立方程组求得椭圆方程;(2)根据斜率坐标公式,结合点在椭圆上,整理求得斜率之积,可以当结论来用;(3)将直线与椭圆方程联立,结合韦达定理,结合直线方程,求得其过的定点.19、(1);(2)最大值为-1,最值为-5.【解析】(1)根据给定条件结合函数的导数建立方程,求解方程并验证作答.(2)利用导数探讨函数在上的单调性即可计算作答.【小问1详解】依题意:,则,解得:,当时,,当时,,当时,,则函数在处有极值,所以.【小问2详解】由(1)知:,,,当时,,当时,,因此,在上单调递增,在上单调递减,于是得,而,,则,所以函数在上的最大值为-1,最值为-5.20、(1),(2)证明见解析【解析】(1)根据可得,从而可得;(2)利用错位相减法可得,从而可得,又,即可证明不等式成立.【小问1详解】解:∵,∴当时,,当时,,∴,经检验,也符合,∴,;【小问2详解】证明:因为,∴,∴∴,又∵,∴,所以21、(1)(2)【解析】小问1:由抛物线的定义可求得动点的轨迹方程;小问2:可知直线的方程为,设点、,将直线的方程与抛物线的方程联立,求出的值,利用抛物线的定义可求得的值,结合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论