福建省龙岩市漳平第一中学2025届高二上数学期末统考试题含解析_第1页
福建省龙岩市漳平第一中学2025届高二上数学期末统考试题含解析_第2页
福建省龙岩市漳平第一中学2025届高二上数学期末统考试题含解析_第3页
福建省龙岩市漳平第一中学2025届高二上数学期末统考试题含解析_第4页
福建省龙岩市漳平第一中学2025届高二上数学期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省龙岩市漳平第一中学2025届高二上数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在的最大值是()A. B.C. D.2.已知双曲线的左、右焦点分别为,过点的直线与圆相切于点,交双曲线的右支于点,且点是线段的中点,则双曲线的渐近线方程为()A. B.C. D.3.设命题,则为()A. B.C. D.4.抛物线的焦点坐标为()A. B.C. D.5.已知函数,则()A. B.C. D.6.已知函数的图象如图所示,则不等式的解集为()A. B.C. D.7.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.如图所示的杨辉三角中,第8行,第3个数是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.568.数列1,6,15,28,45,...中的每一项都可用如图所示的六边形表示出来,故称它们为六边形数,那么第10个六边形数为()A.153 B.190C.231 D.2769.十二平均律是我国明代音乐理论家和数学家朱载堉发明的.明万历十二年(公元1584年),他写成《律学新说》,提出了十二平均律的理论.十二平均律的数学意义是:在1和2之间插入11个正数,使包含1和2的这13个数依次成递增的等比数列.依此规则,插入的第四个数应为()A. B.C. D.10.椭圆的焦点坐标是()A.(±4,0) B.(0,±4)C.(±5,0) D.(0,±5)11.已知A,B,C,D是同一球面上的四个点,其中是正三角形,平面,,则该球的表面积为()A. B.C. D.12.在长方体中,,,则异面直线与所成角的正弦值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正项等比数列的前项和为,且,则_______14.一条直线过点,且与抛物线交于,两点.若,则弦中点到直线的距离等于__________15.若数列的前n项和,则其通项公式________16.参加数学兴趣小组的小何同学在打篮球时,发现当篮球放在地面上时,篮球的斜上方灯泡照过来的光线使得篮球在地面上留下的影子有点像数学课堂上学过的椭圆,但他自己还是不太确定这个想法,于是回到家里翻阅了很多参考资料,终于明白自己的猜想是没有问题的,而且通过学习,他还确定地面和篮球的接触点(切点)就是影子椭圆的焦点.他在家里做了个探究实验:如图所示,桌面上有一个篮球,若篮球的半径为个单位长度,在球的右上方有一个灯泡(当成质点),灯泡与桌面的距离为个单位长度,灯泡垂直照射在平面的点为,影子椭圆的右顶点到点的距离为个单位长度,则这个影子椭圆的离心率______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系xOy中,已知抛物线C:y2=4x经过点A(1,2),直线l:y=kx+b与抛物线C交于M,N两点.(1)若,求直线l的方程;(2)当AM⊥AN时,若对任意满足条件的实数k,都有b=mk+n(m,n为常数),求m+2n的值.18.(12分)已知椭圆的离心率为,左、右焦点分别为,,过的直线交椭圆E于A,B两点.当轴时,(1)求椭圆E的方程;(2)求的范围19.(12分)在△ABC中,(1)求B的大小;(2)求cosA+cosC的最大值20.(12分)已知三角形的三个顶点,求边所在直线的方程,以及该边上中线所在直线的方程21.(12分)某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均值和中位数;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?(3)小明打算将四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过,求他支付的快递费为45元的概率.22.(10分)已知椭圆:的长轴长为6,离心率为,长轴的左,右顶点分别为A,B(1)求椭圆的方程;(2)已知过点的直线交椭圆于M、N两个不同的点,直线AM,AN分别交轴于点S、T,记,(为坐标原点),当直线的倾斜角为锐角时,求的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用函数单调性求解.【详解】解:因为函数是单调递增函数,所以函数也是单调递增函数,所以.故选:C2、D【解析】焦点三角形问题,可结合为三角形的中位线,判断:焦点三角形为直角三角形,并且有,,可由勾股定理得出关系,从而得到关系,从而求得渐近线方程.【详解】由题意知,,且点是线段的中点,点是线段的中点,为三角形的中位线故,故,由双曲线定义有由勾股定理有故则则,故故渐近线方程为:故选:D【点睛】双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的关系3、D【解析】利用含有一个量词的命题的否定的定义判断.【详解】因为命题是全称量词命题,所以其否定是存在量词命题,即,故选:D4、C【解析】先把抛物线方程化为标准方程,求出即可求解【详解】由,有,可得,抛物线的焦点坐标为故选:C5、B【解析】求出,代值计算可得的值.【详解】因为,则,故.故选:B.6、D【解析】原不等式等价于,根据的图象判断函数的单调性,可得和的解集,再分情况或解不等式即可求解.【详解】由函数的图象可知:在和上单调递增,在上单调递减,所以当时,;当时,;由可得,所以或,即或,解得:或,所以原不等式的解集为:,故选:D.7、B【解析】由题意知第8行的数就是二项式的展开式中各项的二项式系数,可得第8行,第3个数是为,即可求解【详解】解:由题意知第8行的数就是二项式的展开式中各项的二项式系数,故第8行,第3个数是为故选:B8、B【解析】细心观察,寻求相邻项及项与序号之间的关系,同时联系相关知识,如等差数列、等比数列等,结合图形可知,,,,,,,据此即可求解.【详解】由题意知,数列的各项为1,6,15,28,45,...所以,,,,,,所以.故选:B【点睛】本题考查合情推理中的归纳推理;考查逻辑推理能力;观察分析、寻求规律是求解本题的关键;属于中档题、探索型试题.9、C【解析】先求出等比数列的公比,再由等比数列的通项公式即可求解.【详解】用表示这个数列,依题意,,则,,第四个数即.故选:C.10、A【解析】根据椭圆的方程求得的值,进而求得椭圆的焦点坐标,得到答案.【详解】由椭圆,可得,则,所以椭圆的焦点坐标为和.故选:A.11、C【解析】由题意画出几何体的图形,把、、、扩展为三棱柱,上下底面中心连线的中点与的距离为球的半径,由此能求出球的表面积【详解】把、、、扩展为三棱柱,上下底面中心连线的中点与的距离为球的半径,,,是正三角形,,,球的表面积为故选:C12、C【解析】连接,可得,得到异面直线与所成角即为直线与所成角,设,设,求得的值,在中,利用余弦定理,即可求解.【详解】如图所示,连接,在正方体中,可得,所以异面直线与所成角即为直线与所成角,设,由在长方体中,,,设,可得,在直角中,可得,在中,可得,所以,因为,所以.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据给定条件求出正项等比数列的公比即可计算作答.【详解】设正项等比数列的公比为,依题意,,即,而,解得,所以.故答案为:14、【解析】求出弦的中点到抛物线准线的距离,进一步得到弦的中点到直线的距离【详解】解:如图,抛物线的焦点为,,弦的中点到准线的距离为,则弦的中点到直线的距离等于故答案为:15、【解析】由和计算【详解】由题意,时,,所以故答案为:16、【解析】建立平面直角坐标系,解得图中N、Q的横坐标,列方程组即可求得椭圆的a、c,进而求得椭圆的离心率.【详解】以A为原点建立平面直角坐标系,则,,直线PR的方程为设,由到直线PR的距离为1,得,解之得或(舍)则,又设直线PN方程为由到直线PN的距离为1,得,整理得则,又,故则直线PN的方程为,故,由,解得,故椭圆的离心率故答案为:【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)3或【解析】(1)由可得,则可得直线为,设,然后将直线方程代入抛物线方程中消去,再利用根与系数的关系,由可得,三个式子结合可求出,从而可得直线方程,(2)将直线方程代入抛物线方程中消去,再利用根与系数的关系表示出,再结合直线方程表示出,由AM⊥AN可得,化简结合前面的式子可求出或,从而可可求出的值,进而可求得答案【小问1详解】因为A(1,2),,所以,则直线为,设,由,得,由,得则,因为,所以,所以,所以,所以,解得,所以直线的方程为,即,【小问2详解】设,由,得,由,得,则,所以,,因为AM⊥AN,所以,所以,即,所以,所以,所以或,所以或,所以或18、(1)(2)【解析】(1)根据离心率及通径长求出椭圆方程;(2)分直线AB斜率存在和斜率不存在两种情况得到的范围,进而得到答案.【小问1详解】当轴时,取代入椭圆方程得:,得,所以,又,解得,,所以椭圆方程为【小问2详解】由,记,当轴时,由(1)知:,所以,当AB斜率为k时,直线AB为,,消去y得,所以,,所以,综上,的范围是.19、(1)(2)1【解析】(1)由余弦定理及题设得;(2)由(1)知当时,取得最大值试题解析:(1)由余弦定理及题设得,又∵,∴;(2)由(1)知,,因为,所以当时,取得最大值考点:1、解三角形;2、函数的最值.20、;【解析】根据两点式方程和中点坐标公式求解,并化为一般式方程即可.【详解】解:过的两点式方程为,整理得即边所在直线的方程为,边上的中线是顶点A与边中点M所连线段,由中点坐标公式可得点M的坐标为,即过,的直线的方程为,即整理得所以边上中线所在直线的方程为21、(1)公司每天包裹的平均数和中位数都为260件.(2)该公司平均每天的利润有1000元.(3).【解析】(1)对于平均数,运用平均数的公式即可;由于中位数将频率分布直方图分成面积相等的两部分,先确定中位数位于哪一组,然后建立关于中位数的方程即可求出.(2)利用每天的总收入减去工资的支出,即可得到公司每天的利润.(3)该为古典概型,根据题意分别确定总的基本事件个数,以及事件“快递费为45元”包括的基本事件个数,即可求出概率.【详解】(1)每天包裹数量的平均数为;或:由图可知每天揽50、150、250、350、450件的天数分别为6、6、30、12、6,所以每天包裹数量的平均数为设中位数为x,易知,则,解得x=260.所以公司每天包裹的平均数和中位数都为260件.(2)由(1)可知平均每天的揽件数为260,利润为(元),所以该公司平均每天的利润有1000元(3)设四件礼物分为二个包裹E、F,因为礼物A、C、D共重(千克),礼物B、C、D共重(千克),都超过5千克,故E和F的重量数分别有,,,,共5种,对应的快递费分别为45、45、50,45,50(单位:元)故所求概率为.【点睛】主要考查了频率分布直方图的平均数,中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论