河北省藁城市第一中学2025届数学高二上期末综合测试试题含解析_第1页
河北省藁城市第一中学2025届数学高二上期末综合测试试题含解析_第2页
河北省藁城市第一中学2025届数学高二上期末综合测试试题含解析_第3页
河北省藁城市第一中学2025届数学高二上期末综合测试试题含解析_第4页
河北省藁城市第一中学2025届数学高二上期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省藁城市第一中学2025届数学高二上期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知对任意实数,有,且时,则时A. B.C. D.2.已知函数,则的单调递增区间为().A. B.C. D.3.小方每次投篮的命中率为,假设每次投篮相互独立,则他连续投篮2次,恰有1次命中的概率为()A. B.C. D.4.椭圆的焦点坐标为()A., B.,C., D.,5.命题“若,则”的逆命题、否命题、逆否命题中是真命题的个数为()A.0个 B.1个C.2个 D.3个6.在中,角、、所对的边分别是、、.已知,,且满足,则的取值范围为()A. B.C. D.7.经过点A(0,-3)且斜率为2的直线方程为()A. B.C. D.8.若函数在上为单调增函数,则m的取值范围()A. B.C. D.9.已知长方体的底面ABCD是边长为4的正方形,长方体的高为,则与对角面夹角的正弦值等于()A. B.C. D.10.已知向量,,若与共线,则实数值为()A. B.C.1 D.211.某一电子集成块有三个元件a,b,c并联构成,三个元件是否有故障相互独立.已知至少1个元件正常工作,该集成块就能正常运行.若每个元件能正常工作的概率均为,则在该集成块能够正常工作的情况下,有且仅有一个元件出现故障的概率为()A. B.C. D.12.已知点为直线上任意一点,为坐标原点.则以为直径的圆除过定点外还过定点()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆C,直线l:,若圆C上恰有四个点到直线l的距离都等于1.则b的取值范围为___.14.等比数列的前n项和,则的通项公式为___________.15.在数列中,,,记是数列的前项和,则=___.16.已知等比数列的前n项和为,且满足,则_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线C:的离心率为,过点作垂直于x轴的直线截双曲线C所得弦长为(1)求双曲线C的方程;(2)直线()与该双曲线C交于不同的两点A,B,且A,B两点都在以点为圆心的同一圆上,求m的取值范围18.(12分)求适合下列条件的曲线的标准方程:(1),焦点在轴上的双曲线的标准方程;(2)焦点在轴上,且焦点到准线的距离是2的抛物线的标准方程19.(12分)已知函数.(1)当时,不等式恒成立,求实数的取值范围;(2)解关于的不等式:.20.(12分)已知集合,(1)若,求m的取值范围;(2)若“x∈B”是“x∈A”的充分不必要条件,求m的取值范围21.(12分)如图1,在△MBC中,,A,D分别为棱BM,MC的中点,将△MAD沿AD折起到△PAD的位置,使,如图2,连结PB,PC,BD(1)求证:平面PAD⊥平面ABCD;(2)若E为PC中点,求直线DE与平面PBD所成角的正弦值22.(10分)如图,在三棱柱中,平面ABC,,,,点D,E分别在棱和棱上,且,,M为棱的中点(1)求证:;(2)求直线AB与平面所成角的正弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】,所以是奇函数,关于原点对称,是偶函数,关于y轴对称,时则都是增函数,由对称性可知时递增,递减,所以考点:函数奇偶性单调性2、D【解析】利用导数分析函数单调性【详解】的定义域为,,令,解得故的单调递增区间为故选:D3、A【解析】先弄清连续投篮2次,恰有1次命中的情况有两种,它们是互斥关系,因此根据相互独立事件以及互斥事件的概率计算公式进行求解.【详解】由题意知,他连续投篮2次,有两种互斥的情况,即第一次投中第二次不中和第一次不中第二次投中,因此恰有1次命中的概率为,故选:A.4、A【解析】由题方程化为椭圆的标准方程求出c,则椭圆的焦点坐标可求【详解】由题得方程可化为,所以所以焦点为故选:A.5、B【解析】先判断出原命题和逆命题的真假,进而根据互为逆否的两个命题同真或同假最终得到答案.【详解】“若a=0,则ab=0”,命题为真,则其逆否命题也为真;逆命题为:“若ab=0,则a=0”,显然a=1,b=0时满足ab=0,但a≠0,即逆命题为假,则否命题也为假.故选:B.6、D【解析】利用正弦定理边角互化思想化简得出,利用余弦定理化简得出,结合,根据函数在上的单调性可求得的取值范围.【详解】且,所以,由正弦定理得,即,,,所以,,则,由余弦定理得,,则,由于双勾函数在上单调递增,则,即,所以,.因此,的取值范围为.故选:D.【点睛】本题考查三角形内角余弦值的取值范围的求解,考查了余弦定理以及正弦定理边角互化思想的应用,考查计算能力,属于中等题.7、A【解析】直接代入点斜式方程求解即可详解】因为直线经过点且斜率为2,所以直线的方程为,即,故选:8、B【解析】用函数单调性确定参数,使用参数分离法即可.【详解】,在上是增函数,即恒成立,;设,;∴时,是增函数;时,是减函数;故时,,∴;故选:B.9、C【解析】建立空间直角坐标系,结合空间向量的夹角坐标公式即可求出线面角的正弦值.【详解】连接,建立如图所示的空间直角坐标系∵底面是边长为4的正方形,,∴,,,因为,,且,所以平面,∴,平面的法向量,∴与对角面所成角的正弦值为故选:C.10、D【解析】根据空间向量共线有,,结合向量的坐标即可求的值.【详解】由题设,有,,则,可得.故选:D11、A【解析】记事件为该集成块能够正常工作,事件为仅有一个元件出现故障,进而结合对立事件的概率公式得,再根据条件概率公式求解即可.【详解】解:记事件为该集成块能够正常工作,事件为仅有一个元件出现故障,则为该集成块不能正常工作,所以,,所以故选:A12、D【解析】设垂直于直线,可知圆恒过垂足;两条直线方程联立可求得点坐标.【详解】设垂直于直线,垂足为,则直线方程为:,由圆的性质可知:以为直径的圆恒过点,由得:,以为直径的圆恒过定点.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据圆的几何性质,结合点到直线距离公式进行求解即可.【详解】圆C:的半径为3,圆心坐标为:设圆心到直线l:的距离为,要想圆C上恰有四个点到直线l的距离都等于1,只需,即,所以.故答案为:.14、【解析】利用的关系,结合是等比数列,即可求得结果.【详解】因为,故当时,,则,又当时,,因为是等比数列,故也满足,即,故,此时满足,则.故答案为:.15、930【解析】当为偶数时,,所以数列前60项中偶数项的和,当为奇数时,,因此数列是以1为首项,公差为2等差数列,前60项中奇数项的和为,所以.考点:递推数列、等差数列.16、##31.5【解析】根据等比数列通项公式,求出,代入求和公式,即可得答案.【详解】因为数列为等比数列,所以,又,所以,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)利用双曲线离心率、点在双曲线上及得到关于、、的方程组,进而求出双曲线的标准方程;(2)联立直线和双曲线的方程,得到关于的一元二次方程,利用直线和双曲线的位置关系、根与系数的关系得到两个交点坐标间的关系,利用A,B两点都在以点为圆心的同一圆上得到,再利用向量的数量积为0得到、的关系,进而消去得到的不等式进行求解.【小问1详解】解:因为过点作垂直于x轴的直线截双曲线C所得弦长为,所以点在双曲线上,由题意,得,解得,,,即双曲线的标准方程为.【小问2详解】解:联立,得,因为直线与该双曲线C交于不同的两点,所以且,即且,设,,的中点,则,,因为A,B两点都在以点为圆心的同一圆上,所以,即,因为,,所以,即,将代入,得,解得或,即m的取值范围为或.18、(1);(2)或【解析】(1)设方程为(,),即得解;(2)由题得,即得解.【详解】(1)解:由题意,设方程为(,),,,,,所以双曲线的标准方程是(2)焦点到准线的距离是2,,∴当焦点在轴上时,抛物线的标准方程为或19、(1);(2)答案见解析.【解析】(1)由题设可得,进而可知在恒成立,即可求参数范围.(2)题设不等式等价于,讨论的大小并根据一元二次不等式的解法求解集即可.【小问1详解】当时,得,即.由,则,∴,即,∴,即,∴实数的取值范围是.【小问2详解】由,即,即.①当时,不等式解集为;②当时,不等式的解集为;③当时,不等式的解集为.综上,当时﹐不等式的解集为;当时,不等式的解集为﹔当时,不等式的解集为.20、(1)(2)【解析】(1)先求出,由得到,得到不等式组,求出m的取值范围;(2)根据充分不必要条件得到是的真子集,分与两种情况进行求解,求得m的取值范围.【小问1详解】,解得:,故,因为,所以,故,解得:,所以m的取值范围是.【小问2详解】若“x∈B”是“x∈A”的充分不必要条件,则是的真子集,当时,,解得:,当时,需要满足:或,解得:综上:m取值范围是21、(1)证明见解析;(2).【解析】(1)推导出,,利用线面垂直的判定定理可得平面,再利用面面垂直的判定定理即可证明;(2)以A为坐标原点,建立如图空间直角坐标系,利用向量法即可求出直线DE与平面所成角的正弦值.【小问1详解】由题意知,因为点A、D分别为MB、MC中点,所以,又,所以,所以.因为,所以,又,所以平面,又平面,所以平面平面;【小问2详解】因为,,,所以两两垂直,以A为坐标原点,建立如图空间直角坐标系,,则,设平面的一个法向量为,则,令,得,所以,设直线DE与平面所成角为,则,所以直线DE与平面所成角的正弦值为.22、(1)证明见解析;(2)【解析】(1)由线面垂直、等腰三角形的性质易得、,再根据线面垂

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论